
An agent-oriented approach to support change
propagation in software evolution∗

Khanh Hoa Dam
School of Computer Science and Information Technology

RMIT University
Melbourne, Australia

kdam@cs.rmit.edu.au

ABSTRACT
Software maintenance and evolution is arguably a lengthy and ex-
pensive phase in the life cycle of a software system. A critical issue
at this phase is change propagation: given a set of primary changes
that have been made to software, what additional secondary changes
are needed? Although many approaches have been proposed, auto-
mated change propagation is still a significant technical challenge
in software maintenance and evolution. This paper presents a Ph.D.
research in the final stages of developing and evaluating a novel,
agent-based, framework to support semi-automated change propa-
gation in evolving software systems.

1. INTRODUCTION
Software maintenance and evolution is the modification of a soft-

ware product after delivery to correct faults, to improve perfor-
mance or other attributes, or to adapt the product to a modified
environment. It is an important part of the software development
activity, which can account for a large percentage of the cost of soft-
ware development [11, page 449]. Although software maintenance
and evolution is a highly important area for both research and in-
dustry, there has been very little work that we are aware of on soft-
ware maintenance in agent-oriented software engineering (AOSE).
The main purpose of this PhD research is to fill that gap, as well
as apply agent technology to the problem of software evolution in
a broader context [2, 3, 4].

When software is modified, typically some primary changes are
made and then additional, secondary, changes are made as a re-
sult. Determining and making these secondary changes is termed
change propagation [8] and is widely considered to be compli-
cated, labour-intensive and expensive, especially in complex soft-
ware systems. Although several existing techniques [1] address
this problem to a certain extent, these approaches are still labour-
intensive solutions, and managing inconsistencies in software mod-
els remains a challenging problem [10].

The major goal of our research is developing a framework that
provides more effective automated support for change propagation
in design models. In our view, a tool cannot fully automate change
∗The author is very grateful for the supervision given on this disser-
tation research by Associate Professor Michael Winikoff and Pro-
fessor Lin Padgham. This work is being supported by the Aus-
tralian Research Council under grant LP0453486, in collaboration
with Agent Oriented Software.

Copyright © 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

propagation because a tool cannot make decisions involving trade-
offs and design styles, where human intervention is required. How-
ever, our framework should provide an assistant tool that helps the
designer by presenting feasible change propagation options.

The change propagation framework that we proposed [4] is based
on a simple hypothesis: given a model (i.e. a design) which has
been subjected to primary changes, the system finds inconsisten-
cies in the model (with respect to given constraints), and then in-
vokes repair options to fix these consistency violations, resulting
in changes being propagated. However, differing from existing ap-
proaches, we use existing agent techniques to represent and imple-
ment several major parts of our framework. More specifically, the
change propagation engine proposed uses a Belief-Desire-Intention
(BDI) platform to perform change propagation. Furthermore, re-
pair options are represented as BDI plans whilst fixing a constraint
is considered as a goal/event. The use of BDI-style, event-triggered,
plans matches well with the cascading nature of change propaga-
tion where a change can cause other changes to be made. In addi-
tion, there are usually many ways of fixing a given inconsistency,
and this is naturally captured using multiple plans that respond to
a given event. Although we do not use the full capabilities of BDI
agents, these two properties of change propagation make the use of
BDI plans beneficial and, we believe, well motivated.

The remainder of this paper is organised as follows. In the next
section we briefly describes our change propagation framework and
its components. We then conclude by discussing the current status
and future directions of our work (section 3).

2. CHANGE PROPAGATION FRAMEWORK
Much of the work that has been done in change propagation has

been addressing the issue at the code level [1]. Recently, how-
ever, as the importance of models in the software development pro-
cess has been better recognised, there is an emerging need to deal
with changes at the model level. As a result, the main focus of
our work is to deal with propagating changes through design mod-
els. Our agent-oriented approach provides a generic change prop-
agation framework (see figure 1) which can be applied to different
software engineering methodologies, and in fact we have applied
it to both UML and Prometheus [7]. Due to space limitation, we
briefly describe the main process and the major components of the
framework. Further details of the framework can be found in [2, 3,
4].

The key data items that the framework requires are a meta-model,
a collection of well-formedness constraints, an application design
model, and a collection of repair plans. The meta-model specifies,
in the usual manner, what entities exist in a design model, and their
relationships. The meta-model is captured in UML, and is exported
to XMI format for use by our implementation. The constraints

Cite as: Extended Thesis Abstract for Doctoral Mentoring Program, K.H.Dam
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems 
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 
2008, Estoril, Portugal, pp. 1736-1737.



specify conditions that a well-formed design should satisfy. We use
the Object Constraint Language [6] to specify constraints. OCL is
part of the UML standards which is used to specify invariants, pre-
conditions, post-conditions and other kinds of constraints imposed
on elements in UML models. The application design model is a ex-
isting design, for example a Prometheus design in the case of using
Prometheus methodology [7].

At design time the repair plan generator takes the constraints and
the meta-model as inputs, and returns a parameterized set of event-
triggered repair plan types that are able to repair violations of the
constraint [2]. Repair plans are represented as BDI-style event-
triggered plans (we use a syntax based on AgentSpeak(L) [9]). Our
translation schema guarantees completeness and correctness, i.e.
there are no repair plans to fix a violation of a constraint other than
those produced by the generator; and any of the repair plans pro-
duced by the generator can fix a violation. The set of repair plan
types is created ahead of time and forms the library of plans that
the change propagation engine uses to fix constraint violations.

Generate 
repair plan 

types

Metamodel 
OCL constraints

Repair plan types
Plan types 
repository

Check 
constraints Violated constraints

Calculate cost

Repair plan instances

Plan instances with least cost

Select one 
plan to 
execute

Chosen repair plan instances

Constraints
Metamodel

Application’s 
model

Execute plan

changes

model
Generate 

repair plan 
instances

Repair plan types

(1)

(2)

(3)

(4)
(5)

(6)

Figure 1: Change Propagation Framework

At runtime we check whether the constraints hold in the design
model. We use the repair plans to generate plan instances (i.e. re-
pair options) for the violated constraints, i.e. inconsistencies. Typ-
ically a given inconsistency will have a number of repair plans that
could be used to restore consistency. In order to deal with the issue
of how to select amongst these repair plans, we have proposed and
implemented a cost calculation mechanisms for repair plans [3].
We select a repair option, possibly by picking the single cheapest,
if it exists, or by asking the user. The selected repair option is exe-
cuted, and it updates the application design model.

3. CURRENT STATUS AND FUTURE WORK
We have fully developed a theoretical foundation for our frame-

work as well as refined it with details. The repair plan generator,
an important component of the framework which represents a new
method for automatically generating repair plans from OCL con-
straints, has been developed. Our repair plan generator is able to
take common OCL constraints as inputs, and perform a translation
that has been proven to be sound and complete [2].

In addition, we have successfully resolved another important is-
sue as part of this framework involving the selection between dif-
ferent applicable (repair) plan instances to fix a given constraint
violation [3]. We addressed this problem by defining a suitable no-
tion of repair plan cost that takes into account the cascading nature

of change propagation by incorporating both conflict and synergies
between plans. We were also able to prove that, with regard to this
notion of cost in this particular domain, in order to repair a set of
violated constraints we can consider a single constraint at a time,
in an arbitrary order, with no loss of generality. This has helped us
develop and implement an algorithm, based on the notion of cost,
that finds cheapest options and proposes them to the user.

We have recently implemented the Change Propagation Assis-
tant (CPA) tool that demonstrates how our approach works in prac-
tice. The tool is integrated with the Prometheus Design Tool (PDT)1,
a modeling tool that supports the Prometheus methodology for build-
ing agent-based systems. We then performed empirical evaluations
in both artificial settings and a real situation (the design of a weather
alerting system [5]) to assess the efficiency and effectiveness of our
change propagation framework generally and the CPA tool in par-
ticular. The results have shown that our approach is effective given
that a reasonable amount of primary changes are provided and the
cost algorithms are practical for small to medium realistic applica-
tions [3].

The evaluation outcomes leads us to some specific areas for fu-
ture work. We intend to investigate the interaction between con-
straints in order to limit the number of plans to be explored in our
algorithm and consequently improve its performance and scalabil-
ity. In addition, we consider dealing with the issue that in some
cases there may be a large number of repair options returned by the
CPA tool, which makes it hard for the user to select which one to
choose.

4. REFERENCES
[1] R. Arnold and S. Bohner. Software Change Impact Analysis. IEEE

Computer Society Press, 1996.
[2] K. H. Dam and M. Winikoff. Generation of repair plans for change

propagation. In M. Luck and L. Padgham, editors, Agent Oriented
Software Engineering (AOSE), pages 30–44, Honolulu, Hawaii, May
2007.

[3] K. H. Dam and M. Winikoff. Cost-based BDI plan selection for
change propagation. In Proceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), Estoril, Portugal, May 2008. (To appear).

[4] K. H. Dam, M. Winikoff, and L. Padgham. An agent-oriented
approach to change propagation in software evolution. In
Proceedings of the Australian Software Engineering Conference
(ASWEC), pages 309–318. IEEE Computer Society, 2006.

[5] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M. Winikoff.
An open meteorological alerting system: Issues and solutions. In
V. Estivill-Castro, editor, Proceedings of the 27th Australasian
Computer Science Conference, pages 351–358, Dunedin, New
Zealand, 2004.

[6] Object Management Group. Object Constraint Language (OCL) 2.0
Specification, 2006.

[7] L. Padgham and M. Winikoff. Developing intelligent agent systems :
a practical guide. John Wiley & Sons, Chichester, 2004. ISBN
0-470-86120-7.

[8] V. Rajlich. Changing the paradigm of software engineering.
Commun. ACM, 49(8):67–70, 2006.

[9] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In MAAMAW ’96: Proceedings of the 7th
European workshop on Modelling autonomous agents in a
multi-agent world : agents breaking away, pages 42–55.
Springer-Verlag, 1996.

[10] G. Spanoudakis and A. Zisman. Inconsistency management in
software engineering: Survey and open research issues. In K. S.
Chang, editor, Handbook of Software Engineering and Knowledge
Engineering, pages 24–29. World Scientific, 2001.

[11] H. V. Vliet. Software engineering: principles and practice. John
Wiley & Sons, Inc., 2nd edition, 2001. ISBN 0471975087.

1http://www.cs.rmit.edu.au/agents/pdt




