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1. INTRODUCTION
In popular fiction, artificially intelligent agents experience

the same world as humans. A spacecraft computer in 2001:

A Space Odyssey can attempt to stop the astronauts who
want to deactivate it. A droid in Star Wars can infiltrate a
space station and help rescue a princess. A robot in Short

Circuit can discover the value of life and reject its military
programming. These machines have the capacity to behave
effectively in novel situations that their creators could not
have explicitly anticipated.

In reality, current autonomous agents lack the ability to
adapt to the complex structure of the human world. To
achieve acceptable performance, their creators must instill
either an engineered behavior policy or an ability to formu-
late and execute plans automatically. For this latter pur-
pose, human designers must formalize domain knowledge
that accurately captures the dynamics of the world for all
those situations the agent will encounter, and they must de-
sign a representation for this knowledge that accomodates
the agent’s reasoning ability. The human effort required
limits this approach to very constrained tasks. A key diffi-
culty is robustness to uncertainty, due both to limitations in
human knowledge and to inherent stochasticity in the world.

Research into reinforcement learning (RL) provides an
attractive alternative paradigm for controlling autonomous
agents. In this framework, learning agents rely primarily
on experience data to compute behavior policies that at-
tempt to maximize rewards over time. One broad class of
RL algorithms learns the agent’s optimal state-action value
function, which estimates the cumulative reward possible as
a function of a proposed action and the state of the world.
Behaving greedily with respect to the optimal value function
yields optimal behavior. Early theoretical results showed
that even very simple algorithms could converge in the limit
to the optimal value function for any finite problem,1 even
with no prior knowledge regarding the effects of actions or
the goal of the task.

In practice, a shift from human-supplied knowledge to ma-
chine learning trades one limit on scalability for another.
The theory underlying most RL algorithms assumes that ev-

1The problem must allow the agent to visit every state in-
finitely often.
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ery distinct situation may be arbitrarily different from every
other situation. The canonical theoretical results therefore
rely on visiting every distinct state infinitely often! Because
the real world contains an infinite number of states, an agent
cannot rely on visiting the same state more than once. When
confronted with a novel situation, it must generalize when
possible from past experiences in similar situations. Other-
wise, the agent may spend its entire lifetime taking purely
exploratory actions, never returning to a previously visited
state to exploit what it learns! Insufficient generalization
thus implies excessive learning time in real-world problems.
At the other extreme, an agent believing that all situations
are the same would always execute the same action. Ex-
cessive generalization thus prevents a learning agent from
attaining intelligent behavior.

The correct generalization scheme is therefore essential
to effective learning in real-world problems. However, most
RL algorithms to date rely on a human designer to choose
the representations that determine how the agent general-
izes. This thesis advocates scientific agents that discover for
themselves qualitative structure allowing them to generalize
what they learn. Such agents would be scientific in the sense
of allowing experience to revise broad hypotheses that en-
able more effective control over the environment. The next
section describes the ideas that underpin the proposed de-
velopment of such an agent, which will address the following
question:

Can the automatic search for generaliza-

tion schemes allow a reinforcement-learning

agent to discover the domain knowledge

necessary for coping with sophisticated, real-

world problems?

2. A LANGUAGE OF GENERALIZATION
A scientific agent must have a vocabulary with which

to build hypotheses about its environment. This vocabu-
lary must simultaneously be expressive enough to represent
useful real-world knowledge and simple enough for an au-
tonomous agent to apply effectively. This thesis will develop
an agent that employs a vocabulary consisting of hierarchies
of abstract models. To illustrate these concepts, consider
the human example of a man considering how to commute
to work on a particular day. From prior experience, the
man has a mental model allowing him to predict the con-
sequences of driving his car to work, including the amount
of time the drive would consume. This model is abstract in
the sense that it depends on a small subset of all the factors
the man could consider. The time required does not depend
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on what the man puts in the trunk or what he needs to do
once he arrives at the office, but it may depend on variables
such as whether the commute would take place during rush
hour. The model is also abstract in the sense that it is hi-
erarchical: taking the car to work is an abstract action that
actually consists of a sequence of lower-level actions, each of
which may recursively have its own abstract model. Espe-
cially at the lowest levels of this hierarchy, the models must
employ approximation techniques to cope with continuous
state spaces, which are natural in real-world problems.

The preceding example reveals four integral concepts. Pre-
vious research has developed each of these four concepts in
the context of RL:

Function approximation is the representation of an in-
principle-arbitrary continuous value function using a
member of a restricted family of functions, typically
defined by a finite parameterization.

Model estimation is an approach to RL that explicitly
learns the effect of each action in each state, from
which the optimal value function is computed.

State abstraction is a technique that assumes that cer-
tain states are completely equivalent, allowing an agent
to reason in a smaller, abstract state space.

Temporal abstraction is a technique that selects actions
by recursively decomposing temporally extended ab-
stract actions into sequences of shorter actions, allow-
ing an agent to reason at an abstract time scale.

Comparatively little work examines the compatibility and
synergies among these techniques, although each has been
the focus of a substantial body of research. This thesis
will explicitly examine how to combine these techniques to
form the core of a scientific agent. The synthesis of these
ideas must allow such an agent to discover representation
autonomously, in contrast to the bulk of research into ab-
straction, in which human users must supply the abstrac-
tions manually.

To cope with an unknown, continuous environment in the
absence of prior knowledge, the agent will rely at its foun-
dation on instance-based function approximation. Instance-
based approaches only allow generalization in local neigh-
borhoods, permitting the agent to generalize conservatively
in the early stages of learning. To explore the environment
as efficiently as possible, the agent will combine function
approximation with model-based RL. Instance-based mod-
els will both permit efficient reuse of existing data, and rea-
soning about uncertainty in the model can direct the agent
towards the most informative new data.

Instance-based approximation suffers from a major draw-
back: it does not scale well to high-dimensional problems,
which are common in the real world. The scientific agent will
introduce abstractions specifically to address this problem.
One simple but practical family of state abstractions simply
ignores some subset of the state features, reducing the di-
mensionality of the problem. This approach is inspired by
the observation that many real-world problems have struc-
ture implicit in the representation of the state as a feature
vector. In many cases, the one-step model, value function,
or optimal policy at a given state may be independent of
certain elements of this vector, and a scientific agent can
benefit by noticing such structure.

One conjecture of this thesis is that the state-dependent
set of relevant features provides a valuable basis for defining
temporal abstractions. A sequence of actions executed using
a given set of state features can be construed as a single tem-
porally abstract action, whose execution lasts as long as the
agent employs that state abstraction. In fact, the definition
of such temporal abstractions seems necessary to apply dis-
covered state abstractions safely, since the naive application
of state abstractions can corrupt the learned value function.
A scientific agent can create abstract actions that activate
the state abstractions it has discovered, allowing it to learn
when to apply state abstractions in the same way that any
reinforcement learning agent learns when to apply actions.

The online discovery and implementation of abstractions
thus allows the scientific agent to grow beyond its initial
conversative generalization scheme. As the agent gathers
more data, it adds more abstract actions to the reinforce-
ment learning problem it is solving. As the set of actions
evolves, the one-step model, value function, and set of opti-
mal policies also change, perhaps supporting the discovery
of new higher-level abstractions. The growing hierarchy of
abstractions should allow the agent to develop increasingly
sophisticated behaviors and to cope with increasingly com-
plex environments.

3. CONTRIBUTIONS
The initial contributions of this thesis synthesized pre-

viously disparate lines of RL research. These contributions
include Fitted R-max, an algorithm that combines the func-
tion approximation of fitted value iteration with the model-
based exploration of R-max; R-maxq, an algorithm that
combines the theoretical guanratees of R-max with the hi-
erarchical decomposition of MAXQ; and some preliminary
results on discovering partial state abstractions that can be
encapsulated in temporal abstractions to speed up learning
(for a model-free RL algorithm without function approxi-
mation).

This thesis has also contributed new perspectives on the
issue of generalization, which underlies the unification of
research into abstractions, models, and function approxima-
tion. It emphasizes how the problem of generalization prop-
erly extends beyond learning the value function to learning
domain models. In particular, reasoning about generaliza-
tion in models is more straightforward than reasoning about
generalization in value functions. The thesis also addresses
the problem of exploration, which is typically studied in fi-
nite domains where generalization is unnecessary. It may
provide some insight on potential extensions to prior re-
search on exploration, to relax the unrealistic assumption
of no generalization.

Finally, this thesis will contribute a complete learning
agent that can reason scientifically about its environment
to determine how to generalize. This work will thus serve
as an entry into the new generation of RL algorithms that
learn an appropriate generalization scheme. Whereas other
recently developed algorithms with this motivation attempt
to determine an appropriate approximation scheme for the
value function alone, the scientific agent will instead con-
struct hierarchies of abstract models that may better cap-
ture the structure of the real world.




