
An Approach to Online Optimization of Heuristic
Coordination Algorithms

Jumpol Polvichai
Computer Engineering Dept.
King Mongkut’s University of

Technology Thonburi
126 Tungkru,

Bangkok, 10140 Thailand
jumpol@cpe.kmutt.ac.th

Paul Scerri
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213
pscerri@cs.cmu.edu

Michael Lewis
Information Sciences Dept.

University of Pittsburgh
135 North Bellefield Ave.

Pittsburgh, PA 15260
ml@sis.pitt.edu

ABSTRACT
Due to computational intractability, large scale coordination
algorithms are necessarily heuristic and hence require tun-
ing for particular environments. In domains where charac-
teristics of the environment vary dramatically from scenario
to scenario, it is desirable to have automated techniques
for appropriately configuring the coordination. This paper
presents an approach that takes performance data from a
simulator to train a stochastic neural network that concisely
models the complex, probabilistic relationship between con-
figurations, environments and performance metrics. The
stochastic neural network is used as the core of a tool that
allows rapid online or offline configuration of coordination
algorithms to particular scenarios and user preferences. The
overall system allows rapid adaptation of coordination, lead-
ing to better performance in new scenarios.

Categories and Subject Descriptors
I.2.6 [Learning]: Connectionism and neural nets; I.6.5 [Model
Development]: Modeling methodologies

General Terms
Algorithms

Keywords
Stochastic neural network, large scale coordination algo-
rithms, complex system modeling

1. INTRODUCTION
In the near future, large scale automated coordination of

humans, robots and software agents will revolutionize the
achievement of complex goals in a variety of domains. Ex-
citing work is being performed for domains including disas-
ter response[8], military operations[3] and business[19]. Key
characteristics of the environment impacting the coordina-
tion, e.g., observability[17], team size[5] and communication
bandwidth availability, will vary significantly from scenario

Cite as: An Approach to Online Optimization of Heuristic Coordination
Algorithms, Jumpol Polvichai, Paul Scerri and Michael Lewis, Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to scenario. For effective performance, the coordination al-
gorithms need to adjust to the prevailing scenario, e.g., by
communicating less when bandwidth is limited. In some
cases, adaptation will involve tuning heuristics, while in
other cases it will involve changing algorithms for all or part
of the coordination. For example, in a small team when
performance must be optimized, an auction may be used for
role allocation, but for a bigger team, in a more dynamic
environment a token based approach may be better[23].

Unfortunately, few approaches to adapting coordination
can be found in the literature. Practical coordination algo-
rithms are too complex for analytic optimization approaches
[16]. Some algorithms have an ability to self optimize aspects
of their behavior, however this ability is typically limited[11].
For other algorithms, some hand-tuning is possible, although
this requires highly skilled operators[2]. Multi-agent learn-
ing is an active research area, but most algorithms require
many iterations to optimize, making them inappropriate for
quickly adapting to a particular scenario[7]. Hence, there is
a need for an approach to rapidly optimizing coordination
algorithms for a particular scenario.

This paper presents an approach to this problem, relying
on three key ideas. First, an abstracted simulation of the
coordination algorithms, the possible configuration of those
algorithms and the potential characteristics of the environ-
ment is used to generate a large volume of data. That data
is used to train a neural network model of the relationship
between input values representing algorithm configurations
and environment circumstances and output values represent-
ing aspects of performance. Precise performance of the al-
gorithm will vary given randomness and asynchrony in the
environment and algorithm interactions. To deal with this,
stochastic neural networks are required to allow one input
to neural network to have a distribution of possible outputs.
Previous approaches to allowing stochastic output to neu-
ral networks had a range of drawbacks, so we developed a
novel approach that adds a small number of internal, ran-
dom nodes to the input of a normal neural network.

The stochastic neural network does not produce the same
output every time for the same input, hence standard back
propagation techniques cannot be used for training. Instead,
to train the neural network, a genetic algorithm is used with
a novel fitness function for determining whether the output
distribution matches the data distribution. To compute the
fitness, multiple outputs from the simulation and from the
stochastic neural network are required. These are compared

623

May,12-16.,2008,Estoril,Portugal,pp.623-630.

with a Pearson-Chi-Square test[6] to determine the degree
of correlation and hence the fitness. The approach is shown
to generate stochastic neural networks with good matches
to a range of distributions.

Building on the concise representation of the mapping be-
tween algorithm parameters, environment and performance,
a tool was developed that allows a user to specify prefer-
ences on output parameters and prevailing environmental
conditions and be rapidly presented with coordination con-
figurations for best performance. A fast genetic algorithm is
required to search for optimal configurations, because not all
inputs or outputs of the neural network are free to vary, thus
making back-propogation impossible. The user is presented
with a small set of options that meet their preferences but
have either different performance tradeoffs or have different
performance distributions. The tool can even be used online
to reconfigure a running team to changing or newly under-
stood environment conditions or changed user preferences.
For example, early on the user might want the coordination
to act quickly to bring a situation under control, using as
much bandwidth as required, but later focus on quality at
the expense of some time while also attempting to free up
bandwidth for other purposes.

2. PROBLEM STATEMENT
We define S and C, as the sets of all possible configurations

of the environment, and a set of all possible configurations of
the coordination algorithms, respectively. s ∈ S describes
the key features of a particular environment in which the
multi-agent system is operating. For example, s will cap-
ture the observability of the environment and the size of the
team being coordinated. c ∈ C describes how the coordi-
nation algorithms are configured. For example, the vector c
may include components for which task allocation algorithm
to use and parameters impacting communication decisions.
The precise components of these vectors will depend on the
coordination algorithms. For the token based algorithms
which are the focus of this paper, |s| and |c| are at least 12.

We define P as the set of performance measures. For ex-
ample, performance measures will include probability of goal
achievement, communication bandwidth used and resources
utilized. The function M : S × C → P maps from an envi-
ronment and set of configuration parameters to a measure
of performance. We refer to M as the Team Performance
Model. The team performance model is typically not known,
nor can it be analytically constructed. At a particular time,
the user will have a preference for tradeoffs with respect to
P . For example, they may be willing to sacrifice some per-
formance to keep communication bandwidth use to a mini-
mum. In general, we capture this via a function f : P → R.
Typically, we consider f to be a weighted sum over P , i.e.,
f(P) =

∑
pi∈P wipi. Thus, the aim of this work is to find:

arg max
c∈C

f(M(s, c))

The major challenge to this research is the complexity
of the relationship between the configuration parameters of
coordination algorithms and the performance measures for
large teams. Figure 1 gives an example of the complex non-
linear relationships that occur in coordination systems. On
the x-axis the number of agents in the team is varied and
on the y-axis two performance variables are measured. The
6 lines, three with solid lines, three with dashed lines, show

Figure 1: Example of the complex relationships be-
tween parameters and performance.

how changes in two configuration parameters effect aver-
age performance as the team size is changed. Clearly, the
changes are non-linear and even vary for different values of
the same configuration parameter. For the current target co-
ordination algorithms, there are a minimum of 16 important
environmental and algorithm parameters implying 1025 pos-
sible configurations. Each configuration will lead to a distri-
bution of performance, with the nature of the distributions
varying from configuration to configuration. For example,
some configurations will have normally distributed perfor-
mance, while others will have multi-modal performance.

To determine whether it was likely to be possible to find
relatively simple reconfiguration rules, decision tree induc-
tion (C4.5) [18] was used to try to capture the relationship
M . With a reduced problem using 14 input attributes, only
four distinctive output classes (LOW, MEDIUM, HIGH, VERY
HIGH), and 30,000 cases, the result was 573 classification
IF-THEN rules. On test data, these rules performed with
only 74.2% correct classification. Classification into these
coarse output classes is simpler than required here, yet the
very large number of rules was unable to even do this rea-
sonably correctly. From this initial experiment, it was con-
cluded that a rich, expressive model was required to capture
a complex relationship.

3. OVERALL PROCESS
Figure 2 shows the outline of the approach. Data is col-

lected from a simulation environment that is sufficiently high
fidelity to capture key algorithm and performance features
but sufficiently fast to be able to perform a large number of
simulation runs. This is often feasible for large scale coordi-
nation algorithms simply by abstracting away the environ-
ment and using internal message passing for communication,
since typically these are the most time intensive components.
Next, a evolutionary learning process utilizes the collected
data to generate the Team Performance Model. Finally, the
team performance model is used as the core of a tool that
allows users to optimize team performance prior or during
a scenario. In the following sections, each of these steps is
described in additional detail.

4. DATA COLLECTION
The initial step of the process is the collection of a large

volume of data. This data either already exists, e.g., from

624

Figure 2: High level view of overall process.

many training exercises, or needs to be gathered. In this
paper, data is collected from an abstracted simulation en-
vironment. Several computer years were used to generate
simulation data, with each run taking between 1s and ten
minutes, depending on the complexity of the configuration.

The process of creating and preprocessing training sets
for the learning process is atypical, because distributions of
outputs are required. Each training datum is made up of
two parts: the input vectors, s and c and a set of output
vectors, p. For the purposes of computing a fitness function
during the evolutionary algorithm, the output values are
discretized into some number of slots. In this work, 100
slots were typically used.

Training Data Requirements
Since the space of possible configurations is very large,

training data can only be collected for a small subset of the
space. Fortunately, statistical techniques exist which bound
the data collection requirements, while providing guarantees
on coverage.

The most widely used methods to determine appropriate
sample size for given accuracy and confidence parameters use
Hoeffding bounds (or the additive Chernoff bounds)[9, 21].
The Hoeffding bounds characterize the deviation between
the true errors and observed errors over n independent trials,
as

P
{
Errortrue > Errorn−trials + ε

}
≤ e−2nε2 (1)

This characteristic gives us a way to ensure that any con-
sistent learner using a finite hypothesis space H, with prob-
ability 1−δ, output a hypothesis within error ε of the target
concept, we have

m ≥ 1

2ε2

(
ln|H|+ ln(

1

δ
)

)
(2)

However, this equation can not be applied to infinite hy-
pothesis spaces[12], thus are unapplicable here. For neu-
ral networks, particularly Perceptron networks containing s
Perceptions, each with r inputs, we can bound the number
of training examples sufficiently to learn (with probability
at least 1 − δ) any target concept within error ε[12]. We
have

m ≥ 1

ε

(
4log2(

2

ε
+ 16(r + 1)slog2(es)log2(

13

ε
)

)
(3)

However, this approach fails to apply for backpropagation
networks[12]. The method that we employ calculates the

number of samples that will guarantee a desired accuracy
in an estimate σ̂x (calculated based on the samples) of a
parameter σx called the support threshold. The parameter
σx is a measure of the prevalance of a pattern given by x in
the space of configurations T , in which T = S×C (S and C
are the sets of all possible configurations of the environment,
and a set of all possible configurations of the coordination
algorithms, respectively.) Where x ⊂ t for t ∈ T . This
is a useful way to measure the accuracy with which a set
of samples L represents the configuration space T because
we want important patterns to occur in L with the same
frequency that they occur in T and hence we want low error
in the estimate σ̂x.

Formally, Let t = {t1, t2, t3, · · · , tm} be a set of configu-
ration parameters and T be the set of all possible configu-
rations. Each configuration t ∈ T is a set of values of all
parameters. Given a sub-configuration x and a configura-
tion t, we say that t contains x if and only if x ⊆ t. We
define σx as the number of configurations in T that contain
sub-configuration x. The probability that a configuration t
randomly selected from T contains x is px = σx/|T |. Lee
et al use this to determine a sample size[10] m = |L| that
will guarantee a desired accuracy in the estimate σ̂x ob-
tained from samples. The analysis of Lee et al. is valid for
σx < |T | × sp%, where sp is a parameter which gives an
upper bound on the prevalence of a pattern x in the space
of configurations T .

Let α be a variable used to control the desired accuracy
in the estimate of σx such that there is a 100(1 − α)%
chance that the estimate is correct (lay in a confidence in-
terval). Furthermore, if we assume that the error in σ̂d is
normally distributed, let zσ/2 be a critical value of σ̂x such
that the area under the error curve beyond zσ/2 is exactly
α/2. With the parameters of importance thus described Lee
et al. showed that the number of samples to obtain the
desired accuracy in σ̂x, is given by:

m ≥
(10zα/2)2(1− sp%)

sp%
(4)

For example, with sp = 2% and α = 0.05, if we ran-
domly select 19, 000 configurations from all possible eligible
configurations, so that there is 95% chance that estimation
of proportions of any sub-configuration X ⊆ T would lay
within the confident interval (which has the width less than
0.04% the total possible space). For this work, we collected
21000 samples.

.

5. STOCHASTIC NEURAL NETWORKS
To capture the team performance model, with the non-

linearities, output distributions and very large size, a con-
cise, flexible representation was required. Neural networks
were chosen because of the particularly concise way they
can capture and reproduce an arbitrarily complex function.
However, typical neural networks map precisely from input
to output variables and do not allow distributions of possible
outputs. To make neural networks appropriate for captur-
ing the team performance model, it was necessary to develop
stochastic neural networks (SNNs).

Previous approaches have shown significant potential for
representing uncertainty as a form of stochastic neural net-
works. A special kind of stochastic neural network, called

625

Approximate Identity Neural Networks (AINN) [22], is very
powerful and effective in approximate, complex, non-linear
systems. However, implementation of an AINN is very com-
plicated and becomes significantly more difficult as the num-
ber of input parameters grow. Alternatively, neural net-
works with stochastic resonance were introduced, using a
time periodic signal as a stochastic element[14]. Although
such stochastic neural networks are trained with an extended
back propagation method, their performance is limited to
very simple tasks. Recently, stochastic models of neural net-
works were used to represent complicated gene regulatory
networks using Poisson random signals[20]. However, such
stochastic neural networks only capture Poisson and Normal
uncertainty distributions. Thus, although promising neural
networks have no effective way of handling arbitrary uncer-
tainty distributions.

With inspiration from the dynamic rearrangement [1], we
developed a new type of stochastic neural networks that has
the properties required to capture the team performance
model. As shown in Figure 3, a normal artificial neural
network can be transformed into a stochastic neural net-
work by adding extra input nodes to the input layer and
feeding them with internal random signals. These random
signals are stochastically changed every time the network is
executed. Executing the network for a number of times, a
distribution of possible outputs can be generated.

The concept allows output nodes to act stochastically even
while input is held constant and internal nodes act determin-
istically. In general, an artificial neural network is an inter-
connected, layer by layer, chain of simple processing nodes,
where each node receives a number of inputs and sends an
output to other nodes. Each node is deterministic in that
its output is based entirely on its input values. The internal
random signals are simply treated as additional input signals
to the artificial neural network, i.e., they are connected to
every internal node by adjustable weights. Changing weights
result in changing the distributions of values on the output
nodes. Thus, it makes possible to manipulate the neural
network’s stochastic behavior by adjusting the weights in-
side the network. If the target system is deterministic, which
means the outputs are always the same for the same input,
the stochastic neural network adapts the weights to ignore
stochastic components.

Effectively, the network maps a given input and range of
random values to output values proportional to how often
that output occurs in the output distribution. For example,
in a simple case, if input 1 corresponded to output 1 20% of
the time and to output 2 80% of the time, the neural net-
work would map input 1 and 20% of the possible random
values to an output of 1 and map an input of 1 and 80% of
the possible random values to an output of 2. Notice that
externally, it will not be known which range of random val-
ues map to which output value. Arbitrarily complex output
distrbutions simply correspond to more complex mappings
from input and random ranges to output values.

More than one random input node may be required to cap-
ture particularly complex uncertainty distributions, but our
results show that three random input nodes will effectively
capture even the most complex distributions. More random
nodes can speed up the learning process, apparently by pro-
viding more options for constructing a mapping. In contrast
to previous approaches, this technique is straightforward to
implement and can be trained simply with pairs of system

Figure 3: A neural network can be transformed into
a stochastic neural network by adding extra input
nodes feed with. These random signals are stochas-
tically changed every time the network is executed.

configuration and system performance instances.
Team Performance SNN
To capture the highly non-linear relationship between en-

vironment, configuration and team performance an SNN was
constructed. A three-layer feed-forward network is was cho-
sen since it is capable of representing any arbitrary function
[15]. The network topology consists of 31 nodes in the input
layer, 5 random signal nodes, 16 nodes in the first hidden
layer, 8 nodes in the second hidden layer, and 4 nodes in
the output layer. In the next section, the training of this
network is described.

5.1 Genetic Algorithm Training
A genetic algorithm is a search technique loosely based on

the concept of natural selection[4]. Given an environment
and a goal formulated as a fitness function, an initial popu-
lation is generated at random and a set of genetic operators
defined. New generations are generated using three com-
mon genetic operators: reproduction, crossover, and muta-
tion with fitter individuals more likely to be chosen as a
basis for the genetic operators. This process repeats until
either a sufficiently fit individual is found or time expires.
The solution of the problem is found in the final population.
Genetic algorithms were chosen for training because the re-
lationship between input variables was not only non-linear,
but also stochastic, which is problematic for back propaga-
tion methods due to the large number of local minima.

Genetic algorithms utilize a fitness function which mea-
sures, in this case, the accuracy of the SNN to the target
data in order to determine which individuals to propogate
to the next generation. Determining fitness fis more techni-

626

Figure 4: Team control interface displays all input parameters on the left side, performance measures on the
right side, selected editable parameters in the middle, and command buttons in the bottom.

cally challenging than for vanila neural networks because or
an SNN the random internal node causes the output to be
different each time the input is presented. To evaluate each
individual in every generation, every stochastic neural net-
work is required to execute with the same input values (ex-
cluding all stochastic signals) a number of times, so that dis-
tributions of actual outputs can be measured. These actual
output distributions are compared in the evaluation process
against the target output distributions from the training sets
via the Pearson Chi-square (χ2) test [6]:

χ2 =

n∑
i=1

(
(fs − f∗s)2

f∗s

)
, n = na + nt (5)

where n denotes the total number of slots, na denotes the
number of slots in actual distribution, nt denotes number
of slots in target distribution. Typically, these values will
be equal. fs denotes observed frequency in a particular slot
s, and f∗s denotes predicted frequency in a particular slot
s. The predicted frequency in a particular slot s can be
calculated from:

f∗s =
to · ts
T

(6)

where T denotes the total number of observations, to denotes
the total number of observations in actual or target distri-
butions, and ts denotes the total number of observations in
the same slots combined. From [6], we can get an index of
the strength for the relation between these two distributions,
using the formula:

V =

√
χ2

N(k − 1)
(7)

where N is the total frequency and k = 2 in this case.
Then, this index is used to estimate the percentage of er-

ror between actual and target distributions. In addition, we
need to add an admissible constraint, which is an absolute
difference between means of actual and target distributions,
to the fitness function for directing the learning process to
convert. Thus, the fitness function of individual i in popu-
lation is:

Fitnessi =

∑
d∈D

∑
p∈P

(
χ2
d,p + |µd,pa − µd,pt |

)
|D| · |P | (8)

where D is the set of training data (d ∈ D), P is the set
of output nodes (p ∈ P), χ2

d,p is the χ2 of the pth output

of the data entry d, µd,pa is a mean of actual distribution of
the pth output of the data entry d, µd,pt is a mean of target
distribution of the pth output of the data entry d, |D| is the
size of training data and |P | is the number of output nodes.

Training process
To compute fitness value for a stochastic neural networki

in a particular generation, the process is described in Algo-
rithm 1. Fitnessi is assigned to the ith stochastic neural
network in the current population. These values are used
in a part of ranking process for generating the new popu-
lation of stochastic neural networks in the next generation.
To enable the possibility of presenting the user with options
of different configurations, the genetic algorithm keeps track
of the ten best individuals. Notice that while this process is
marginally more complex than computing the fitness for a
normal genetic algorithm, since neural networks are so fast,
it is not significantly slower than the normal process.

Specific Values
For this work, each generation of the population contained

2,000 individuals. The chromosomes of each individual de-
fined the weights of the stochastic neural network connec-
tion. All weights were randomly initialized. After evaluation
of the training data set, the 100 best performers were kept

627

Algorithm 1: Training process
(1) foreach datak in training data set
(2) Execute SNNi with the same input values from datak ta

times
(3) Score← 0
(4) foreach outputj
(5) compute distributions of actual outputj and its actual

mean (µk,ja)
(6) use target outputj distribution from datak to compute

the target mean (µk,jt)
(7) compute predicted frequency f∗s for each s (Eqn. 6)
(8) compute χ2

k,j (Eqn. 5)

(9) compute Score = Score+ χ2
k,j + |µk,ja − µk,jt |

(10) Score← Score/|P |
(11) Fitnessi ← Score/|D|

Figure 5: Dialog box for presenting four options to
the user for reconfiguration.

and used to produce the 1900 new individuals, via genetic
operations. Other genetic algorithm values were used, but
none were found that performed significantly better.

6. USER INTERFACE
The SNN does not solve the reconfiguration problem on its

own, it simply forms the core of a tool which the user can use
to reconfigure the team. The user specifies the environment
and preferences over output parameters and gets options for
possible configurations. The user can then request that the
tool sends messages to each member of the team to arrange
the reconfiguration. The exact mechanism for doing this is
dependent on the specific coordination algorithms.

The team control interface is designed to be used with the
team performance model. The interface is shown in Figure
4. At the top right of the interface is a choice of backward
search speeds, the slower the speed the more chance the ge-
netic algorithm finds a good configuration. The middle of
the interface has the three key panels. On the left is a list
of input parameters, with their current values. The user
sets system values, either before the scenario or during the
scenario as the values become apparent. Parameters with
a white background are ones that can be changed by the
reconfiguration process. In some cases, the user can deter-
mine whether or not a value can be changed. For example,

Figure 6: Representative comparison between data
from simulator and model learned by SNN. This rep-
resents a tiny fraction of the overall model.

in some domains, the number of robots might be fixed, while
in others the user may be able to vary the number of robots.

The middle panel gives the user the ability to explore var-
ious configurations. They simply select values on the sliders
and the expected performance of that configuration is shown
on the right hand side (see below). This usage of the model,
referred to as “forward mode” because the underlying SNN
is used in a normal feed forward manner, allows an expert
user to explore various options very quickly without using
either a real team or even the abstract simulator.

Output performance measures are shown on the right side.
These outputs are displayed in two formats: data distribu-
tions and box plots. The data distributions are histograms
of output values when the current team performance model
is executed one hundred times. The box plots indicate out-
put minimum values, lower quartile, median, upper quartile,
and maximum values. These values show statistical distri-
butions of the outputs generated from the current model.
There are two check boxes for each performance measure.
The left check box is used to switch between displaying a
result distribution with all available slots or with only non
zero slots. The right check box is used to specify which
performance values the user wants increased or decreased.
When this check box is checked, pull down menus are also
used to specify the constraints whether to increase or to de-
crease those selected performance measures.

Once the user selects which parameters they want in-
creased or decreased, they click “backward execute” and are
presented with a window showing ten configurations offering
different tradeoffs with their distribution. Figure 5 shows a
dialog box offering four different choices (the user needs to
scroll to see additional choices). The user may be able to
select between configurations with a higher uncertainty but
higher average or with lower uncertainty but less desirable
averages. After a decision is made the message goes out to
the team to get the change made.

7. RESULTS
In this section, results are presented to validate three as-

pects of the approach. First, results are provided that show
how well the SNN is able to model the team performance
data. Second, results are presented that show how the SNN
is able to model a wide range of distributions of outputs.
Finally, results show how the user interface tool is able to
reconfigure a running team.

628

Figure 7: Plots display a comparison of learning re-
sults with different numbers of training data using
in each generation. Values in y-axis are Chi-Square
errors and values in x-axis are numbers of genera-
tions.

7.1 Model Accuracy
Figure 6 shows a small subset of data from the simulator

compared with results from the trained model. These graphs
are representative of the type of correlation that was found
between data and model. Notice that general trends in the
data were reasonably captured by the SNN. Trends in the
distributions were generally followed, however the absolute
amount of uncertainty was not always well captured. Wider
distributions in the data were often over estimated. Next we
show how the genetic algorithm learned the model. Figure
7 shows cases where 20 and 50 training samples were used
for evaluating fitness (see Algorithm 1). The more data used
the more computation required, but there is a corresponding
increase in performance. Notice the Chi-square error gets
to about 20% which is approximately the amount of error
shown in Figure 6.

7.2 Capturing Output Distributions
A beta distribution is a versatile distribution that has been

commonly used for modeling data with uncertainty in many
applications [13]. The probability density function of the
beta distribution is calculated as follows:

f(x;α, β) =
1

Beta(α, β)
xα−1(1− x)β−1, (9)

where α > 0, β > 0 and Beta(α, β) denote the beta func-
tion defined by

Beta(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

The key feature of a beta distribution is that different
density function shapes can be obtained by changing α and
β. For instance, uniform distribution can be obtained when
α = 1 and β = 1 and when α = 1/2 and β = 1/2, a ’U’-
shape distribution called arc-sine distribution is produced.
When α = β > 1, the distribution generates a symmetric
normal distribution. When α 6= β, α > 1 and β > 1, an

Figure 8: A set of 4 plots with different values of
α and β. The target distributions are shown in
solid black bars and actual distributions are shown
in white bars. There is an average of less than 10 %
error.

asymmetric distribution is generated.
Figure 8 shows the results of tests where an SNN was

trained to match different beta distributions. Notice that
the beta distribution is the uncertainty for a particular input
and hence must be captured by the stochastic component of
the SNN. Black bars show the target distribution and white
bars show the distribution produced with the SNN. For each
of the different distribution types, there is a good match with
the SNN, although the ’U’-shape is most problematic. These
results are representative of a larger set of tests done with
20 different α and β values. The ’U’-shape was the poorest
match of all the 20 cases.

7.3 Reconfiguration Validation
In the final experiment, the performance of the team per-

formance model and its use through the team control inter-
face are examined. The team control interface is connected
directly with the abstract simulator used to generate the
original data so that a user can set team configurations and
monitor team performance measures online. The user con-
figures the team at the beginning of the mission. Team
performance as measured from the simulation is graphically
displayed on the user interface at each time step. When per-
formance changes are requested, the backward search feature
of the team performance model is used to find suitable re-
configurations. The changed team performance is displayed
from that time step onwards. The simulation is artificially
slowed down to allow the user the chance to request config-
uration changes. Notice that in this case the interface tool
is connected to the simulation and not to a real team. This
makes running tests and measuring performance easier, but
tests with a real team are planned for the future.

The team control interface was evaluated with eight ran-
domly selected configurations. In the first set of tests, the
user requested that single performance measures were ei-
ther increased or decreased. This resulted in 64 cases, each
of which was run 5 times. As shown in Table 1, in 52 of the
64 cases performance increased or descreased as the user re-
quested; in 12 of the 64 cases it did not. When the user
asked some performance measure to increase, it did in 25
of 32 cases, increasing on average 435% (however, without
one outlier, the average increase was 73%). When the per-
formance measure did not increase as requested, the decline
was only 24% (excluding one outlier only 12%). When the
user asked for a decrease in a single performance measure,
a decrease was observed in 28 out 32 cases. 3 of the 4 times

629

Table 1: Reconfiguration Results
One Constraint More Constraints

Success 52 (81.25%) 141 (88.125%)
Fail 12 (18.75%) 19 (11.875%)

a requested decrease was not observed were for the same
configuration, hinting that its performance measures may
have already been very low. When performing correctly, the
average decrease was 35% and when performing incorrectly,
the measure went up on average 115% (removing one outlier
changes this to 29%). These tests show that the tool gener-
ally has the ability to meet simple user requests, although
there is significant room for improvement.

A slightly more complex test involved the user specifying
two or more performance measures to be increased or de-
creased simultaneously. This experiment involved 160 cases,
again averaged over 5 runs. As shown in Table 1, in 141 of
the 160 cases, the change requested by the user was ob-
served. This shows how the system handles more complex
requests as well as simple requests. Notice that in both ex-
periments, in some cases, it may have been impossible to
meet the requested change, e.g., a performance cannot be
increased beyond its maximum, and in other cases, on av-
erage the new configuration might have given the correct
result, but uncertainty in the coordination resulted in it not
being seen. Since the configuration space is so large, it is
infeasible to determine accurately what percentage of the
failures above were due to these reasons.

8. CONCLUSIONS
Large scale coordination will become increasingly impor-

tant as robots and agents become more effective and less ex-
pensive. The coordination algorithms controlling the teams
will necessarily be heuristic since several key coordination
problems are known to be NP-Complete or harder. Thus,
to get effective performance in a particular scenario, the al-
gorithms must be carefully tuned. This paper presented an
approach to online reconfiguration of heuristic coordination
algorithms. The approach uses a simulation to produce a
large data set which is learned by a stochastic neural net-
work then used as the core of a user interface tool. Results
show that the model captured key features of a very large
configuration space and mostly captured the uncertainty in
performance well. The tool was shown to be often capable
of reconfiguring the algorithms to meet user requests for in-
creases or decreases in performance parameters. We believe
this represents the first practical approach to quickly recon-
figuring a complex set of algorithms for a specific scenario.

Immediate future work is focused on interacting with an
actual distributed team, determining the current situation
and autonomously reconfiguring to improve performance.
While the model is generally accurate enough for the spe-
cific purpose it is being used for, more accuracy is desirable.
One direction for investigation is adaptive selection of train-
ing examples, to focus better on areas with more complex
relationships and higher uncertainty. Finally, we would like
to find ways to bring down the very large amount of compu-
tation required to produce the training data and train the
models. While Moore’s law will make the problem somewhat
less critical, it will not always be possible to make very fast
simulations of the target algorithms.

9. REFERENCES
[1] P. Eggenberger, A. Ishiguro, S. Tokura, T. Kondo, and

Y. Uchikawa. Toward seamless transfer from simulated to
real worlds: A dynamically-rearranging neural network
approach. In 8th EWLR, 1999.

[2] R. Falcone and C. Castelfranchi. Tuning the collaboration
level with autonomous agents: A principled theory. In The
IJCAI-01 Workshop on Autonomy, Delegation, and
Control: Interacting with Autonomous Agents, 2001.

[3] D. Glade. Unmanned aerial vehicles: Implications for
military operations. Tech. Report Occasional Paper No. 16,
Center for Strategy and Technology Air War College, 2000.

[4] J. Holland. Adaptation in natural and artificial systems.
Ann Arbor, MI: University of Michigan Press, 1975.

[5] G. Kaminka and M. Bowling. Towards robust teams with
many agents. Tech. Report CMU-CS-01-159, CMU, 2001.

[6] F. N. Kerlinger and H. B. Lee. Foundations of Behavioral
Research. Harcourt College Publishers, 4th edition, 2000.

[7] J. M. Kim, S. I. Moon, and J. Lee. A new optimal avr
parameter tuning method using on-line performance indices
of frequency-domain. IEEE Power Engineering Society
Summer Meeting, 3:1554–1559, July 2001.

[8] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara,
T. Takahashi, A. Shinjoh, and S. Shimada. Robocup rescue:
Searh and rescue in large-scale disasters as a domain for
autonomous agents research. In Proc. 1999 IEEE Intl.
Conf. on Systems, Man and Cybernetics, volume VI, 1999.

[9] J. Kivinen and H. Mannila. The power of sampling in
knowledge discovery. In In Proc. of Thirteenth ACM
SIGACT-SIGMOD-SIGART Symposium, Principles of
Database System, 1994.

[10] S. D. Lee, D. Cheung, and B. Kao. Is sampling useful in
data mining ? a case in the maintenance of discovered
association rules. Data Mining and Knowledge Discovery,
2(3):233–262, 1998.

[11] E. Malville and F. Bourdon. Task allocation: A group self
design approach. In ICMAS’98, 1998.

[12] T. M. Mitchell. Machine Learning, chapter Computational
Learning Theory, McGraw-Hill Higher Education, 1997.

[13] S. Nadarajah and A. K. Gupta. Characterizations of the
beta distribution. Comms. in Statistics - Theory and
Methods, 33(12):2941 – 2957, 2004.

[14] T. Nobori and N. Matsui. Stochastic resonance neural
network and its performance. In IEEE-INNS-ENNS Int. J.
Conf. on Neural Networks, 2000.

[15] L. I. Perlovsky. Neural Networks and Intellect: Using
Model-Based Concepts. Oxford University Press, 2001.

[16] D. Pynadath and M. Tambe. Multiagent teamwork:
Analyzing the optimality and complexity of key theories
and models. In AAMAS’02, 2002.

[17] D. V. Pynadath and M. Tambe. The communicative
multiagent team decision problem: Analyzing teamwork
theories and models. In JAIR, 2002.

[18] J. Quinlan. C4.5: Programs for machine learning. Morgan
Kaufmann, 1993.

[19] C. Rolland, S. Nurcan, and G. Grosz. A unified framework
for modeling cooperative design processes and cooperative
business processes. In Thirty-First Hawaii International
Conference on System Sciences, 1998.

[20] T. Tian and K. Burrage. Stochastic neural network models
for gene regulatory networks. In Congress on Evolutionary
Computation, 2003.

[21] H. Toivonen. Sampling large databases for association
rules. 22nd International Conference on Very Large Data
Bases, 1996.

[22] C. Turchetti, M. Conti, P. Crippa, and S. Orcioni. On the
approximation of stochastic processes by approximate
identity neural networks. IEEE Transactions on Neural
Networks, 9(6):1069–1085, 1998.

[23] Y. Xu, P. Scerri, K. Sycara, and M. Lewis. Comparing
market and token-based coordination. In AAMAS’06, 2006.

630

