
Semantic Matchmaking of Web Services using Model
Checking ∗

Akın Günay
Department of Computer Engineering

Boğaziçi University
Bebek, 34342, Istanbul,Turkey
akin.gunay@boun.edu.tr

Pınar Yolum
Department of Computer Engineering

Boğaziçi University
Bebek, 34342, Istanbul,Turkey
pinar.yolum@boun.edu.tr

ABSTRACT
Service matchmaking is the process of finding suitable ser-
vices given by the providers for the service requests of con-
sumers. Previous approaches to service matchmaking is
mostly based on matching the input-output parameters of
service requests and service provisions. However, such ap-
proaches do not capture the semantics of the services and
hence cannot match requests to services effectively. This
paper proposes an agent-based approach for matchmaking
that is based on capturing the semantics of services and
requests formally through temporal logic. Requests are rep-
resented as a set of properties and compared to the ser-
vice representations using model checking, yielding results
on whether a service can satisfy a request or not. By help
of domain ontologies, our approach also supports flexible
matching, where partially matching services are identified.
We provide a general framework, where our approach can
work with other existing matchmaking approaches and is
integrated with current efforts such as OWL-S and SWRL.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Algorithms

Keywords
Web service, matchmaking, model checking

1. INTRODUCTION
Web services are software that provide a functionality and

can be invoked over the Web in a machine independent

∗This research has been partially supported by Boğaziçi Uni-
versity Research Fund under grant BAP07A102 and the Sci-
entific and Technological Research Council of Turkey by a
CAREER Award under grant 105E073. The first author
is supported by a Graduate Scholarship Program from the
Scientific and Technological Research Council of Turkey.

Cite as: Semantic Matchmaking of Web Services using Model Check-
ing, Akın Günay, Pınar Yolum, Proc. of 7th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2008),
Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril,

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

manner [17]. An important challenge in the usage of Web
services is discovery of appropriate Web services for differ-
ent service needs. For this purpose, the current standard is
the use of Universal Description Discovery and Integration
(UDDI) directories, where services are described in Web Ser-
vice Description Language (WSDL). UDDI is designed for
human users and does not provide facilities for machine pro-
cessing and automated discovery, which is crucial with the
increasing number of available services.

One of the most influential approaches to this problem
is input-output matching, where a service request is con-
sidered to match a Web service if the inputs and outputs
are identical [11, 12, 14]. In this approach, when the input-
output fields do not match identically, the semantics of the
inputs and outputs can be used to compute the degree of
match between concepts using subsumption relationships
presented by ontologies. Although input-output matching
is easy to implement, it cannot guarantee the precision of
the results. That is, since it does not consider the inter-
nal process of services while performing the matchmaking
operation, it is likely that different services with identical
interfaces are counted as good matches although they per-
form completely different tasks.

In this paper we propose a novel agent-based service match-
making approach that captures the semantics of both the
services and the requests. We use Process or Protocol Meta
Language (Promela) [8] to model the services and linear tem-
poral logic (LTL) [6] formulae to model the requests of the
consumers. Using Spin [8] as our model checker, we check if
the requests are satisfied by the services. Our approach can
find exact matches based on semantics of consumers requests
and existing services. If the consumer requests cannot be
satisfied with existing services, our approach computes the
closest alternative service requests to the original request
that can be satisfied by the available services. To do so, it
uses a process ontology that models the atomic processes
contained by the services as semantic concepts and defines
semantic relations between these processes. Specifically, the
ontology is used to generate similar requests to the origi-
nal request that can be provided by the available services.
This enables our approach to support partial matches. As
a result, the consumers can choose among existing services
consciously.

It is important that a new matchmaking approach be
compatible with existing and emerging technologies. To ad-
dress this, we show how Promela models can be presented
in OWL-S [3]. This allows our matchmaker to work with
regular OWL-S specifications. To help consumers generate

273

Portugal,pp. 273-280.



their requests, we extended Semantic Web Rule Language
(SWRL) [9] to show also LTL formulae. These extensions
are part of our general matchmaking framework where our
matchmaking approach can be integrated with other match-
making approaches.

The rest of this paper is organized as follows. Section
2 explains our representation of semantic service requests
with underlying logical structure and examples. Section 3
describes our representations of services and use of model
checking for matching requests and services. Section 4 ex-
plains our matching approach in detail. Section 5 describes
our general matchmaking framework. Section 6 explains our
case study and elaborates on our evaluations. Finally, Sec-
tion 7 reviews some relevant literature and provides direc-
tions for future work.

2. SEMANTIC REQUEST DESCRIPTION
In order to allow semantic matchmaking, the consumers

should be able to express their request semantically, rather
than only expressing input-output parameters or general
keywords. To capture semantic description of requests, we
use LTL. Each request is a set of LTL properties that define
the functional and temporal requirements of the consumer
from the service.

2.1 Linear Temporal Logic (LTL)
LTL is a temporal logic, where the future is seen as a

sequence of states or simply as a path. LTL formulae are
built up from a set of proposition variables, the usual logic
connectives and four temporal modal operators X , F , G and
U . X stands for next. It is a unary operator and it means
that its bounded proposition must hold at the next state of
the given path. F stands for eventually. It is another unary
operator and it means that that its bounded proposition
must hold eventually at some future state(s) of the given
path. G stands for globally and it is a unary operator. It
means that its bounded proposition must hold at all future
states of the given path. U stands for until and it is the
only binary operator. It means that the first proposition
bounded to U must hold until the second proposition starts
to hold. U also requires that the second proposition must
hold in some future state.

2.2 Example Semantic Requests
The following properties are example requirements of a

consumer in selecting a service. These examples are on e-
commerce domain, however the idea can be applied to any
domain. In the following, in LTL formulae each letter repre-
sents a fact. For instance to state the fact that the payment
is made for a good we write p, which can also be interpreted
as isPaid(payment, good). However, to simplify the formu-
lae we use just letters and explain the meaning of each fact
explicitly in the text.

Guarantee delivery or refund after payment: The
service consumer requests a service that guarantees to de-
liver the ordered goods after the payment is done. In the
exception case, if the payment is done but there is no de-
livery of the ordered item (due to the cancellation of the
order by the consumer or a problem faced by the provider,
which prevents the provider from delivery of the ordered
goods), than the payment must be refunded by the service
provider. Following LTL formula corresponds to this situ-
ation, where p, represents isPaid(payment, good), d repre-

sents isDelivered(good, customer) and r represents
isRefunded(p). Formally, G(p → ((pUd) ∨ (pUr))).

Expected final condition: This property is the expected
final condition, where the world is either in a state so that
the consumer made the payment and the provider delivered
goods (successful transaction) or in a state, where there is
no payment and delivery action performed by any of the
participants (canceled transaction). In the formula p repre-
sents isPaid(payment, good) and d represents
isDelivered(good, customer). Formally, F((p ∧ d) ∨ (¬p ∧
¬d)).

Delivery before payment: For some reason (i.e. the
consumer is going to use the service for the first time and
she does not trust the service) a consumer may request from
a service that the delivery of the good is made before the
payment for these goods. This fact is represented by the
following LTL formula. In the formula p represents the fact
isPaid(payment, good) and d represents
isDelivered(good, customer). Formally, G(d → (dUp)).

Secure connection while doing payment: Consumer
prefers secure connection while doing payment. The follow-
ing property represents the request that a secure connection
must be established and the connection stay in this secure
state until the payment operation completed. Otherwise
the payment operation is not performed. In the formula s
represents the fact isSecure(connection) and p represents
isPaid(payment, good). Formally, G((s → (sUp)) ∨ ¬p).

Secure connection for all the transactions: A more
suspicious consumer who is concerned more about her pri-
vacy may not feel comfortable with the previous property
and may require a service, where the entire connection is se-
cure. This property is represented by the following formula
where s represents the fact isSecure(connection). Formally,
G(s).

2.3 Extending SWRL for LTL
To preserve compatibility with existing work on Web ser-

vices, we use OWL-S to represent service requests. However,
since OWL-S does not support LTL implicitly, we need to
create a new schema. OWL-S provides Expression class
to embed expressions in XML format into OWL-S descrip-
tions. However there is no standard schema is available to
represent LTL in XML. Instead of creating a completely
new XML schema to represent LTL, we choose to extend
the existing SWRL, which provides appropriate facilities.
SWRL is the rule language to combine Horn like rules with
OWL knowledge bases. SWLR is based on the combina-
tion of OWL DL and OWL Lite sublanguages of OWL and
Unary/Binary Datalog RuleML sublanguages of the Rule
Markup Language. Since SWRL supports only Horn like
rules, it is not capable to represent every LTL formula. How-
ever the SWRL-FOL [15] extension of SWRL allows expres-
sion of First Order Logic (FOL), so we extend SWRL-FOL
with LTL connectives U , G , F and X . The abstract syntax
of our extension is as follows:

axiom := assertion

assertion := ’Assertion(’

[URIref] {annotation} formula {foformula}

’)’

foformula := atom

| ’until(’ foformula foformula ’)’

274



| ’globally(’ foformula ’)’

| ’finally(’ foformula ’)’

| ’next(’ foformula ’)’

| ’and(’ {foformula} ’)’

| ’or(’ {foformula} ’)’

| ’neg(’ foformula ’)’

| ’implies(’ foformula foformula ’)’

| ’equivalent(’ foformula foformula ’)’

| ’forall(’ variable {variable} foformula ’)’

| ’exist(’ variable {variable} foformula ’)’

variable := ’I-variable(’ URIref description ’)’

| ’D-variable(’ URIref dataRange ’)’

The following XML file expresses the LTL formula G(p →
((pUd)), where p stands for payment and d stands for deliv-
ery.

<Assertion owlx:name="SWRL-LTL Example">

<owlx:Annotation>

<owlx:Label>SWRL-LTL rule example</owlx:Label>

</owlx:Annotation>

<Globally>

<ruleml:Var type="xsd:bool">payment</ruleml:Var>

<ruleml:Var type="xsd:bool">delivery</ruleml:Var>

<Implies>

<swrlx:classAtom>

<owlx:Class owlx:name="isPaid"/>

<ruleml:var>payment</ruleml:var>

</swrlx:classAtom>

<Until>

<swrlx:classAtom>

<owlx:Class owlx:name="isPaid"/>

<ruleml:var>payment</ruleml:var>

</swrlx:classAtom>

<swrlx:classAtom>

<owlx:Class owlx:name="isDelivered"/>

<ruleml:var>delivery</ruleml:var>

</swrlx:classAtom>

</Until>

</Implies>

</Globally>

</Assertion>

3. SEMANTIC MATCHMAKING
Service matchmaking is the process of selecting appropri-

ate service(s) from a set of available services for a service
request. In other words, when we check whether a service
matches to a request, we actually check whether some func-
tional and temporal properties required by the consumer are
satisfied by the service or not. When the matchmaking is
done semantically, then the properties of the service request
are related to the internal workings of the service as shown
in Section 2. To compute whether such properties hold for
various services, we need to represent the semantics of ser-
vices and be able to check whether the semantic properties
hold for the services.

3.1 Service Semantics
A service description provides information about what the

service does, where the service is located and how to com-
municate with the service. The leading ontology for repre-
senting services is OWL-S. OWL-S provides mechanisms to
annotate service information with semantic constructs. An

OWL-S service definition contains a service profile, service
grounding and service model. Service profile includes ba-
sic information such as its name, inputs, outputs, and so
on. Service grounding provides information about where to
find the service and the protocol to interact with it. Service
model gives detailed information about the internal process
of the service. That is the step by step explanation of how
the given inputs are processed and outputs are produced in
particular situations. In our matchmaking approach we use
OWL-S to describe services. A service description in OWL-
S provides all the information that we require to build a
model of the service via its service model section.

3.2 Matching Request to Services
Since we express service requests semantically by LTL

properties as explained in Section 2, we use model check-
ing to find out whether a service satisfies these properties.
Model checking [8] is a method to formally verify distributed
systems and protocols. In model checking the aim is to ver-
ify that certain properties hold for a system. To verify a
system, the model checker exhaustively checks all possible
executions of a system against the specified properties.

In this study we use Spin Model Checker, since it sup-
ports verification of LTL formulae, with which our service
requests are described. Spin uses Promela as the specifica-
tion language, which allows dynamic creation of concurrent
processes to model synchronous or asynchronous distributed
systems. A Promela model consists of processes, message
channels, and variables. Processes model the concurrent en-
tities in the system. Message channels and variables can be
defined locally or globally and message channels might be
created as synchronous or asynchronous behavior. Promela
provides case selection, repetition and unconditional jump
flow control structures. Each case selection structure may
include one or more possible cases, where each case has an
initial statement that is called the guard statement. The
case is selected only if its guard statement is true. If more
than one guard statement is true, one of the corresponding
cases is selected non-deterministically.

Note that, in order to use Spin, we need to translate OWL-
S service descriptions to Promela. We do this translation
using the rules defined by Ankolekar et. al. [1]. Then, using
Spin, we verify the service request properties on the Promela
translations of services.

4. MATCHMAKING APPROACH
As is customary, our proposed agent-based matchmaking

approach works by accepting requests from consumers (ei-
ther human or other agent) and returning a set of services
that matches the request with additional information as the
degree of match for each service. This meta-information is
useful for helping the consumer choose the most appropri-
ate service precisely from a set of services. The matchmaker
agent works as follows:

When services register to the matchmaker agent, the agent
translates the OWL-S service model of the service into a
Promela model that can be used later for model checking.
When it receives a service request from a consumer, it first
extracts the required properties of the consumer, which are
defined as a set of LTL formulae inside the OWL-S request
description. Next, the agent checks the required properties
against the Promela service models one by one by using
Spin model checker. Each property in the request can be

275



satisfied by a service with a certain degree (as explained
in Section 4.1). The degree in which a request is satisfied
by a service is the average of satisfaction degrees of each
individual requirement in the request. We explain the details
of computing degree of match values and their combinations
next.

4.1 Computing Degree of Match
In many domains, finding an exact match for a consumer’s

service request may be difficult if not impossible. When this
is the case, it is best to provide the consumer with a set
of services that at least partially satisfy the request. Ob-
viously, it is important that the services in this set closely
resemble the services the consumer is interested in. That
is, the matchmaker should at least find a similar service for
consumers’ requests. However, when this is the case, the
matchmaker should also assign a degree of similarity to its
matches using a meaningful metric. To achieve this, our
matchmaking approach associates a degree of match value
between services and requests. This value is in the range [0,
1], where the value 1 shows that the service satisfies all the
requirements of the consumer without any exception and 0
shows that none of the requirements are satisfied. The match
degree is computed in two steps. The first step (property
matching) computes how well a service satisfies the given re-
quest, considering the required properties individually. The
second step (priority factoring) combines these satisfaction
rates using the priorities of the consumer as expressed in the
request.

4.2 Property Matching
Property matching is the comparison of each LTL prop-

erty in the request with a service and is repeated for each
service in the registry. The usual starting point is the test-
ing of the property against a service. If the property is not
satisfied by the service, the matchmaker generates similar
alternatives that can be satisfied by the service. In order to
do this, the matchmaker benefits from a process ontology.

Our process ontology consists of a set of atomic processes
as concepts and their hierarchical relations, where each atomic
process maps to a fact in a service model. For instance, the
atomic process (we refer an atomic process simply as process
in the rest of the paper) of making a payment for a good is
mapped to the fact as isPaid(payment, good) in the service
model. The ontology also models the subsumption relations
between the processes. For instance, the general process of
making a payment is specialized as making a payment by
cash, making a payment by credit card and so on. The
depth of these specializations is not restricted. For instance
payment by credit card can be specialized as payment by
visa and payment by master card.

Algorithm 1 explains the property matching. In the al-
gorithm first by using the model checker we check whether
the property is satisfied by the service or not (line 1). If
the property is satisfied by the service, the degree of match
is set to 1 and no further computation is necessary (line
2). If the property is not satisfied as is, we need to check
whether the service satisfies alternative properties that are
similar to the the required property. Therefore, we query the
process ontology to find semantic relations between the pro-
cesses in the service and the required property (Algorithm
2) and use these relations to generate alternative properties
that are similar to the original property (Algorithm 3) (line

4). Next, again using the model checker, we test each of
these alternative properties against the service (line 6). If
an alternative property is satisfied by the service, we com-
pute the similarity of the alternative property to the original
property by using a semantic similarity metric (line 8). To
compute the similarity value, first we determine the seman-
tic similarity between each process in the original property
with the replaced process in the corresponding alternative
property by using the process ontology. There are several
semantic similarity metrics in the literature [16] and any one
would suffice for this work. After all alternative properties
are checked, we determine the alternative property with the
maximum similarity to the original property and associate
this similarity value as the degree of match of the service for
property matching (lines 9, 10).

Algorithm 1 Flexible matchmaking algorithm

Require: Service serv
Require: Property prop
Require: Ontology onto
1: if serv |= prop then
2: return 1.0
3: else
4: altPropSet = genAltPropSet(onto, serv, prop)
5: highSim = 0.0
6: for altProp in altPropSet do
7: if s |= alternativeProperty then
8: altSim =compSim(prop, altProp, onto)
9: if altSim > highSim then

10: highSim = altSim
11: end if
12: end if
13: end for
14: return highSim
15: end if

As explained above, Algorithm 1 relies on Algorithm 2 to
find related processes between a service request and a ser-
vice description and on Algorithm 3 to generate alternative
properties that are similar to the original property. Let us
visit these algorithms next.

Algorithm 2 finds semantic relations between the pro-
cesses in the required property and the processes in the ser-
vice. For example, if both the service request and the ser-
vice description contain a process related to payment, then
payment is a process that is returned by Algorithm 2. To
do this, the algorithm checks each process in the required
property against each process in the service for a semantic
relation using the ontology. If there is a semantic relation be-
tween these two processes (line 3), then the algorithm adds
the relation to a dictionary for future use (line 4). At the
end of this process, for each process of the required property,
the dictionary holds a set of processes, which are semanti-
cally related to the process and are contained by the current
service.

Algorithm 3 generates alternative properties using the
original property and the dictionary of relations created in
Algorithm 2. It enumerates recursively all possible combi-
nations of the relations in the dictionary of relations (line 4)
and then creates a new alternative property for each enumer-
ated combination by replacing the processes in the original
property with the processes in the enumeration (line 6).

Let us walk through the algorithms with an example.

276



Algorithm 2 genAltPropSet(onto, serv, prop)

Require: Service serv
Require: Property prop
Require: Ontology onto
1: for propProc in prop do
2: for servProc in serv do
3: if semSim(propProc, servProc) > 0 then
4: relDict[propProc]+ = servProc
5: end if
6: end for
7: end for
8: enumAltProp(prop, relDict, altPropSet)
9: return altPropSet

Algorithm 3 enumAltProp(prop, relDict, altPropSet)

Require: Property prop
Require: RelationDictionary relDict
Require: alternativePropertySet altPropSet
1: if all proc of prop considered then
2: altPropSet+ = genAlt
3: else
4: for rel in relDict do
5: genalt+ = proc
6: enumAltProp(prop, relDict, altPropSet)
7: end for
8: end if

Assume that we have a service, where the first process is
ordering a book (#order), the next process is the deliv-
ery of the book by mail (#deliver_by_mail) and the last
process is paying for the book with cash (#pay_by_cash).
The consumer looks for a book selling service and has the
required property of delivery of the book before the pay-
ment. The consumer also wants to get the delivery by cargo
(#deliver_by_cargo) and makes the payment with credit
card (#pay_by_creditcard). We also assume that in our
process ontology, we have relations between #deliver_by_mail

and #deliver_by_cargo, and between #pay_by_cash and
#pay_by_creditcard processes.

Algorithm 1 starts by checking if the property can be satis-
fied by the service (i.e., if there is an exact match). Since the
delivery and payment processes are different in the service
and in the requested property, this check fails. Therefore,
we need to check whether the service can partially satisfy
the property or not. To do this, Algorithm 2 determines the
relations between the processes in the required property and
the service and creates the dictionary to hold the relations.
The dictionary will contain the following:

• property.#pay_by_creditcard ↔
service.#pay_by_cash

• property.#deliver_by_cargo ↔
service.#deliver_by_mail

Next, Algorithm 3 creates alternative properties from the
original property by enumerating all combinations in the
dictionary. The alternative properties created in our ex-
ample is listed in Table 1. After the alternative proper-
ties are generated, Algorithm 1 continues by checking each
alternative property against the service. If an alternative
property is satisfied by the service, it computes the simi-
larity between the alternative and original property based

on the average similarity of the individual processes in the
original and alternative properties. For instance, if we con-
sider the alternative property 3 in Table 1, the processes
#pay_by_creditcard and #deliver_by_cargo are replaced
with #pay_by_cash and #deliver_by_mail respectively. If
we assume that the similarity between #pay_by_creditcard

and #pay_by_cash is 0.8 and between #deliver_by_cargo

and #deliver_by_mail is 0.6, than the overall similarity of
the alternative property 3 to the original property is the av-
erage of these two values: 0.7. As the last step, the algorithm
determines the alternative property with the maximum sim-
ilarity value and returns this similarity value as the degree
of match to the original property for property matching.

Table 1: Alternative Properties
Req. Prop. #pay_by_creditcard #deliver_by_cargo

Alt. 1 #pay_by_creditcard #deliver_by_mail

Alt. 2 #pay_by_cash #deliver_by_cargo

Alt. 3 #pay_by_cash #deliver_by_mail

4.3 Priority Factoring
After the degree of match values are computed in property

matching, we combine these values according to property
priorities defined by the consumer and reach a final degree
of match value at the request level.

Our approach allows definition of two degrees of priority
for each property. The first degree of properties are pri-
mary properties, which must be satisfied by the service.
That is, the degree of match computed for this property
in the property level must be greater than 0. Otherwise
the matchmaker does not match the service to the request.
For instance a consumer may want to guarantee that a se-
cure connection is established before a payment transaction
and that this connection stays secure until the transaction
is completed. In such a case this property must be defined
as a primary property and only the services that satisfy this
property are returned by the matchmaker.

Properties in the second degree are called the secondary
properties. These properties are recommended by the con-
sumer, however the matchmaker may still match a request
to a service which does not satisfy these recommended sec-
ondary properties. An example for such a secondary prop-
erty might be related to the order of the processes. For in-
stance, in a service to buy books, the consumer may prefer
to get the books before she makes a payment. However the
consumer may still accept services where payment is done
before delivery if there is no better alternative and since
the service satisfies the primary properties such as buying a
book.

For services that satisfy all the primary properties, we
compute the degree of match value in the request level as
the linear sum of the individual degree of match values com-
puted in the property level. For instance if the request has
one primary property with degree of match value 0.8 for a
corresponding service and one secondary property with de-
gree of match value 0.6 for the same corresponding service
than the overall degree of match value of the service for the
property is 0.7. This scheme does not consider any impor-
tance between the primary and secondary properties, except
that the primary properties must be satisfied by the service
but the secondary properties not. If we want to empha-
size primary properties further we might weight property

277



Matchmaker Controller

Matchmaker Module
Container

Model Checking
based Matchm.

Input-Output
Matchmaker

Service
Consumer
Request
Handler

Knowledge Extractor
Controller

Knowledge Extractor
Module Container

OWL-S to Promela
Translator

Data Storage
Controller

Data Storage
Module Container

Promela
Data Storage

Input-Output
Data Storage

Service
Provider
Request
Handler

Matchmaker Agent

Service
Provider

Service
Consumer

OWL-S Input
Output Extractor

Figure 1: Modular matchmaking framework.

priorities or we might weight each property individually to
emphasize importance of some properties for the consumer.
Using any of these schemes as the result of matchmaking
process we will obtain a set of matching services where each
service is associated with a degree of match.

5. THE MATCHMAKING FRAMEWORK
In our study we developed a service matchmaking frame-

work (Figure 1), which provides an abstract architectural
structure to realize our matchmaking approach. The advan-
tage of this framework is its modular structure, which allows
us to use multiple matchmaking approaches in conjunction.

The framework consists of three main types of entities.
These are service providers, service consumers and the match-
making agent. Service providers are the entities that are
capable of providing one or more services to the service
consumers. They register their services to the matchmaker
agent for advertisement. Service consumers are entities that
want to use one or more services provided by the service
providers. When they need services they make a request
from the matchmaker agent to find matching services for
their request. In the framework there is no restriction for the
implementation of service providers and service consumers,
except that they have capabilities to communicate with the
matchmaker agent in a common protocol.

In the framework, the matchmaker agent acts as a mid-
dle agent [4] to match service requests of the service con-
sumers to the service advertisements of the service providers.
The most important aspect of the matchmaker agent is its
modular structure, which allows the use of multiple match-
making approaches in conjunction. It is possible to specify
which matchmaking approach(s) are going to be used by the
matchmaker separately for each service request. This allows
the consumers to choose between performance and quality
of the matchmaking operation according to their needs.

The matchmaker agent is composed of four types of en-
tities. These are task modules, module containers, module
controllers, and request handlers. Task modules or simply
modules are the primitive entities that are responsible for

performing specific data processing tasks.
There are three types of modules: knowledge extractor

modules, data storage modules and matchmaker modules.

Knowledge extractor modules: These are responsible
for extracting the information required by matchmaking ap-
proaches from the service and request descriptions. For in-
stance, in our approach we need Promela models of services
to use Spin model checker for matchmaking. However, ser-
vice providers register their services through OWL-S, which
does not include the Promela model of the service. There-
fore, we have a knowledge extractor module in the frame-
work to generate the Promela model of the service by using
the information extracted from the OWL-S service model.
If a service provider decides to describe its services in an-
other language, we can simply add a new module to do the
same extraction task for the new language, which makes the
matchmaker agent capable of working with the new language
without any modification to the rest of the system.

Data storage modules: These are responsible from the
storage of the information that is extracted by the knowledge
extractor modules from service descriptions. Each match-
making algorithm may require different information to work.
For instance, our approach require the model of the service
in Promela and other approach may require the input-output
interface of the service. By using multiple data storage mod-
ules we separate information required for each matchmaking
approach, which allows flexible addition or removal of new
matchmaking approaches to the matchmaker agent.

Matchmaker modules: These are the implementations
of the actual matchmaking algorithms.

Module containers and controllers: Containers pro-
vide an abstraction layer to collect similar modules together
(knowledge extractor, data storage and matchmaker) and
controllers provide an interface to communicate with the
modules of the corresponding container. Only controllers
know that which modules are contained by the correspond-
ing container, therefore the controller is responsible to find
the appropriate module for a specific task.

Request handlers: These are responsible to handle re-
quests from the service providers and service requesters as
well as manage the data flow between the modules through
corresponding controllers. There are two different handlers.
Service consumer request handler is responsible for handling
service matchmaking requests from service consumers. It
collects information from knowledge extractor and data stor-
age controllers and feed the matchmaker controller with this
information and sends the matchmaking results back to the
service consumer. Service provider request handler is re-
sponsible for handling service registry requests from service
providers. It requests all the required service information for
an incoming registry request from the knowledge extractor
controller and forwards this information to the data storage
controller to finalize the registration.

6. CASE STUDY
We evaluate our approach in a case study. In this case

study there is a consumer, who is looking for a service to
buy books. Her primary property states that she requires
a service where the connection is secured by https proto-
col when she makes the payment by her credit card and
otherwise she will not do any payment. We represent this

278



property with the LTL formula G((sr → (srUpr)) ∨ ¬pr),
where sr means secure_https_connection and pr means
pay_by_creditcard. Her secondary property states that she
prefers to receive the book by cargo before she makes any
payment by her credit card. We represent this property
with the LTL formula G(dr → (drUpr)), where dr means
delivery_by_cargo and pr means pay_by_creditcard.

There are 16 registered book selling services available in
the matchmaker agent. These services differ in how well
they satisfy the request. Broadly, there are five categories
of services. The first category contains services that exactly
match the request. There is one such service. In the second
category, there are services that satisfy only one property
exactly while they satisfy the other property only partially
or not satisfy at all. There are six of these services. In the
third category, there are services that satisfy both types of
properties partially. There are four of these services. In
the fourth category, we have services that partially satisfy
only one of the properties. There are four of these services.
Finally, there is one service in category five that does not
satisfy any property, neither fully nor partially.

Table 2 summarizes the results of our approach for this
matchmaking request. The table lists all the services with
their related properties to the request. If a property is ex-
actly satisfied, we write satisfied in the corresponding field
and if the property is not satisfied even when we use seman-
tics, we write not satisfied. Recall that if the service does
not satisfy the original property, our approach generates al-
ternative properties and finds out which of these are satis-
fied by the service. Further, it computes a matching degree
among the possible alternative and picks the one with the
highest degree. In Table 2, when a property is not satisfied
by a service, we write the closest alternative property that
is satisfied by the service. Facts sa, pa and da are the pro-
cesses provided by the services that are semantically related
in our ontology to the processes sr, pr and dr in the request,
respectively.

Let us examine the results. Table 2 shows how our ap-
proach successfully generates alternative properties from the
originally requested property and identify partially match-
ing services. Without generating alternative properties, our
approach can only match four services (13, 14, 15 and 16),
which satisfy the primary property exactly. By generating
the alternative properties we identify eight more services (04,
05, 06, 07, 08, 09, 11 and 12) that partially satisfy consumer
requirements and might be useful for the consumer.

We will investigate S12 in detail to show the advantage of
identifying these partially matching alternative services. S12
satisfies the secondary property of the request exactly, how-
ever it does not satisfy the primary property and therefore
it is not identified as a matching service at the beginning.
To check whether this service partially satisfies the request,
we generate three alternative properties from the original
primary property using the semantic relations between sr

and sa and between pr and pa. The three generated proper-
ties are; (1) G((sr → (srUpa)) ∨ ¬pa) in which we use pay-
ment process pa instead of pr, (2) G((sa → (saUpr)) ∨ ¬pr)
in which we use security process sa instead of sr and (3)
G((sa → (saUpa)) ∨ ¬pa) where we use sa and pa instead
of sr and pr, respectively. Then, we use the model checker
to find which of these properties are satisfied by the service
and we determine that S12 satisfies only the first alterna-
tive property, where pr process is replaced by pa. This al-

ternative property shows us S12 can satisfy the request by
replacing the payment process. Assume that at some point
the only available service in the environment is S12 and the
rest of the 15 services are not available for some reason. In
this situation, rather than returning no result in reply to
the request, showing the partial matching service S12 to the
consumer by indicating the difference in the payment pro-
cess is more informative for the service consumer and allows
she to make a more precise decision.

Table 2: List of the 16 potential services. sr: secure
https connection, pr: payment by credit card, dr:
delivery by cargo. sa, pa and da are semantically
related processes.

S Primary Property Secondary Property

S01 not satisfied not satisfied
S02 not satisfied G(da → (daUpa))
S03 not satisfied G(dr → (drUpa))
S04 G((sa → (saUpa)) ∨ ¬pa) not satisfied
S05 G((sr → (srUpa)) ∨ ¬pa) not satisfied
S06 G((sa → (saUpa)) ∨ ¬pa) G(da → (daUpa))
S07 G((sa → (saUpa)) ∨ ¬pa) G(da → (daUpr))
S08 G((sr → (srUpa)) ∨ ¬pa) G(da → (daUpa))
S09 G((sa → (saUpr)) ∨ ¬pr) G(da → (daUpr))
S10 not satisfied satisfied
S11 G((sa → (saUpa)) ∨ ¬pa) satisfied
S12 G((sr → (srUpa)) ∨ ¬pa) satisfied
S13 satisfied not satisfied
S14 satisfied G(da → (daUpa))
S15 satisfied G(da → (daUpr))
S16 satisfied satisfied

As we explained, finding partially matching alternative
services is useful. However, these alternative services must
be scored according to their relevance to the original re-
quest, to inform the consumer about the possible differences.
For this purpose, our approach assigns degree of match val-
ues to services as explained in Section 4. To evaluate this
approach we conduct the following experiment, where we
compute the degree of match values of the services in Table
2. For simplicity, in our experiment we take the similarity
value between all semantically related processes as 0.5. This
means, similarity between process sr and sa, pr and pa, and
dr and da are all equal to 0.5. According to this setting,
the similarities between the original property requested by
the consumer and the alternative properties satisfied by the
services are computed by taking the average of the similari-
ties between the individual processes in the properties. For
instance, in the original primary property, there are sr and
pr processes. In the alternative primary property of S12 sr

process is identical with the required property but pa is used
instead of pr. The similarity of the properties will be equal
to 0.75, which is the average of 1.0 from sr and 0.5 from pa.

Considering this trivial weighting schema, our our match-
making approach assigns a matching degree to each service.
Important findings among these matches are the following:
S16 is assigned a matching degree of 1.0, i.e., it is successfully
identified as an exact match by the matchmaker agent. Ad-
ditionally, the matchmaker agent successfully finds the two
good alternative services S15 and S12, which are equally as-
signed a matching degree of 0.875. Both of these services
fall into the category, where one requirement is fully satis-
fied but the second requirement is only partially satisfied.

279



The degree of match values associated with the partially
matching services show that the matchmaker favors the ser-
vices that are more similar to the original request, which
use fewer number of alternative processes. The matchmaker
agent also assigns a matching degree of 0 to services S01,
S02, S03 and S10, since neither of them satisfy the primary
property or any alternative similar property.

7. DISCUSSION
We propose a novel agent-based service matchmaking ap-

proach that captures the semantics of both the services and
the requests. We use Promela and LTL formulae to model
service descriptions and consumer requests respectively and
we use Spin as model checker. Our approach can find exact
matches based on semantics of consumer requests and ex-
isting services. If the consumer requests cannot be satisfied
with existing services, our approach computes the closest
service requests that can be satisfied by the available services
using a process ontology, which models the atomic processes
contained by the services as semantic concepts and defines
semantic relations between these processes. This enables
our approach to support also partial matches and associate
match degrees to these partially matching services. We also
propose a general matchmaking framework for our approach
where it can be used in conjunction with other approaches.

In the literature there are several approaches based on
input-output matching [12, 14]. Most recently Klusch et al.
[11] extend the input-output matching approach by combin-
ing syntactic matching techniques from information retrieval
with semantics in order to improve matchmaking perfor-
mance. Although this approach provides a mechanism to
rank services according to their relevance to the request it
still suffers from low precision. Additionally as stated in [5]
syntax based information retrieval techniques are not effi-
cient for Web service matching due to insufficient amount
of textual data in Web service descriptions. There are other
approaches that try to capture the semantics of the service
for better matchmaking. Klein and Bernstein [10] propose
an indexing mechanism to create a hierarchical ontology of
process models and develop a query language to perform
matching on the created ontology. Wombacher et al. [18]
propose a process based matchmaking approach, where pro-
cess are modeled as finite state machines and matchmaking
is done through operations such as disjunction, conjunction
and intersection. However this approach based on syntactic
information and does not consider any semantic knowledge.
Additionally it does not support partial matches. Brogi and
Corfini [2] present a matchmaking approach similar to the
one we present in this paper. Instead of LTL and model
checking they use Petri Nets to model services and apply
Petri Net control flow verification for matchmaking. How-
ever, different than ours, the main aim in this approach is
to find possible compositions of available services to satisfy
service requests. Model checking and temporal logic is used
for the composition of Web services [7, 13, 17]. However, to
the best of our knowledge, our approach is the first use of
these methods for matchmaking of web services.

8. REFERENCES
[1] A. Ankolekar, M. Paolucci, and K. Sycara. Spinning

the OWL-S Process Model: Towards the verification
of the OWL-S Process Models. In Proc. of ISWC 2004

Workshop on Semantic Web Services: Preparing to
Meet the World of Business Applications, 2004.

[2] A. Brogi and S. Corfini. Behaviour-aware discovery of
Web service compositions. International Journal of
Web Services Research, 4(3):1–25, 2007.

[3] David Martin et. al. OWL-S: Semantic Markup for
Web Services, 2002.

[4] K. Decker, K. Sycara, and M. Williamson.
Middle-agents for the Internet. In Proc. of Int. Joint
Conf. on Artificial Intelligence, pages 578–583, 1997.

[5] X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and
J. Zhang. Simlarity Search for Web Services. In Proc.
of 13th Int. Conf. on Very Large Data Bases, pages
372–383, 2004.

[6] E. A. Emerson. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B),
chapter Temporal and Modal Logic, pages 997–1072.
Elsevier and MIT Press, 1990.

[7] X. Fu, T. Bultan, and J. Su. Formal verification of
e-services and workflows. In Int. Workshop on Web
Services, E-Business, and the Semantic Web, 2002.

[8] G. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2004.

[9] I. Horrocks et. al. SWRL: A Semantic Web Rule
Language Combining OWL and RuleML, 2004.

[10] M. Klein and A. Bernstein. Toward High-Precision
Service Retrieval. IEEE Internet Computing,
8(1):30–36, 2004.

[11] M. Klusch, B. Fries, and K. Sycara. Automated
Semantic Web Service Discovery With OWLS-MX. In
Proceedings of 5th Internatioanl Joint Conference on
Autonomous Agents and Multiagent Systems, pages
915–922, 2006.

[12] L. Li and I. Horrocks. A Software Framework for
Matchmaking Based on Semantic Web Technology. In
Proc. of 12th Int. Conf. on World Wide Web, pages
331–339, 2003.

[13] S. Narayanan and S. A. McIlraith. Simulation,
Verification and Automated Composition of Web
Services. In Proc. of 11th Int. Conf. on World Wide
Web, pages 77–88, 2002.

[14] M. Paolucci, T. Kawamura, T. R. Payne, and K. P.
Sycara. Semantic Matching of Web Services
Capabilities. In Proc. of 1st Int. Semantic Web
Conference, pages 333–347, 2002.

[15] P. Patel-Schneider. Semantic Web Rule Language
First-Order Logic (SWRL FOL), 2005.

[16] P. Resnik. Using Information Content to Evaluate
Semantic Similarity in a Taxonomy. In Proc. of 14th
Int. Joint Conf. on Artificial Intelligence, volume 1,
pages 448–453, 1995.

[17] M. P. Singh. Distributed Enactment of Multiagent
Workflows: Temporal Logic for Web Service
Composition. In Proc. of the 2nd Int. Joint Conf. on
Autonomous Agents and Multiagent Systems, pages
907–914, 2003.

[18] A. Wombacher, P. Fankhauser, B. Mahleko, and
E. Neuhold. Matchmaking for Business Processes
Based on Conjunctive Finite State Automata.
International Journal of Business Process Integration
and Management, 1(1):3–11, 2005.

280




