
Teaching Sequential Tasks with Repetition through
Demonstration

(Short Paper)
Harini Veeraraghavan

Computer Science Department
Carnegie Mellon University

harini@cs.cmu.edu

Manuela Veloso
Computer Science Department

Carnegie Mellon University
veloso@cs.cmu.edu

ABSTRACT
For robots to become prevalent in human environments, the robots
need to be able to perform complex tasks often involving sequen-
tial repetition of actions. In this work, we present a demonstration-
based approach to teach a robot generalized plans for performing
sequential tasks with repetitions. We introduce action definitions
through perception. Using the action definitions and the demon-
stration, the robot learns a task specific plan for tasks containing
repetition of sub-sequences.

1. INTRODUCTION
A majority of tasks in human environments involve repetitions,

be it assembling furniture using actions such as “HammerNail”,
“TightenScrew”. For a robot to automatically generate a plan using
the actions alone for a complex task such as assembling a furniture
or performing some elaborate sequence of motions is very chal-
lenging. On the other hand, given an example demonstration, the
robot can easily learn a task specific plan for performing the same
task on different problems.

In this work, we contribute a demonstration-based approach to teach
a robot task specific plans. We focus on real world domain and
present an approach that learns task specific plans with repeating
sub-tasks. Concretely, in our approach, both the human and robot
actively participate in the learning task. Through demonstration
the human instantiates the task specific actions. The robot learns
the appropriate action definitions and then using the sequence of
executed actions, learns a task specific plan with repetitions.

This paper is organized as follows. We first present the related work
in Section 2 followed by the experimental domain and the basics of
the teaching approach in Section 3. We present the learning ap-
proach in Section 4, an illustrative result in Section 5 and finally
conclude the paper in Section 6.

2. RELATED WORK
Examples of works that actually implement a planning algorithm

on a robot for learning to execute a task include the works in [3,
8]. Demonstration based learning approaches such as in [4, 5, 7]
learn generalized plans for sequences of actions with little or no

Cite as: Teaching Sequential Tasks with Repetition through Demonstra-
tion (Short Paper), H. Veeraraghavan and M. Veloso, Proc. of 7th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal,pp. 1357-1360.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

repetitions. The work in [1] uses demonstration-based learning
for a single action. Another interesting approach to teaching se-
quential plans is in [9] where a robot learns a specific plan without
any generalization or repetition from a user through simple spoken
language dialogues. Our work to learning looping plans is most
closely related to the work of Winner and Veloso [11] which learns
domain specific plans from example demonstrations for completely
defined domain specific actions in simulated domains. Another in-
teresting approach to loop learning from demonstration with anno-
tations is in [6]. Our approach differs from the afore-mentioned
work in that the action definitions are themselves obtained through
perception in a real world problem domain and the robot success-
fully learns a plan containing repetitions on sub-tasks.

3. ELEMENTS OF LEARNING TASK AND
EXPERIMENTAL DOMAIN

Figure 1: The robot used for the clear table task.

The reference task domain used in this work for learning plans
with loops consists of clearing a table. Fig. 1 depicts the experi-
mental platform and the robot used in this work. The task consists
of applying a sequence of actions repeatedly to move all the ob-
jects from a table into a destination box. The individual actions
such as pick, drop, search, etc are the set of skills that are pre-
programmed into the robot. However, the robot does not know in
what sequence the various actions need to be carried out to achieve
a particular task, such as clearing the table. Similarly, the action
definitions are general so that the robot does not know what objects
are associated with each task. We call such actions robot behaviors.
During demonstration, it learns the association of the robot behav-
iors to objects relevant to the particular task. We call such actions
task-specific actions. The objects are identified by their color using
color thresholding. We now define the different terms used in the
paper.



• Robot behavior is a non-instantaneous sequence of physi-
cal actions performed by the robot that changes the state of
the world. A behavior is composed of a number of primi-
tive actions that are executed in a predefined sequence. The
behaviors are pre-programmed into the robot. Example of a
behavior is PickObject(object) which can be executed on any
object.

• Task-specific action is an instantiation of the robot behavior
but associated with a specific object type. For example, Pick-
ObjectYellowBall(object - yellowballType) is an instantiation
of behavior PickObject but always executed only on objects
that are yellow colored balls. The task specific action is also
composed of a completely defined precondition and effects
corresponding to the specific object types in its argument
list. The task specific action with parameterized objects is
referred to as task-specific operator or simply operator. The
task specific action instantiated with specific objects such as
ball1 is referred to as a grounded action.

• Predicate or Proposition is a representation of the sensed
measurements as facts or relations between different objects.
Each proposition is associated with a visual measurment. For
example, in order to verify the truth of a proposition such as
holdingObject(yellowBall) , the robot first moves its hands to
the level of its head and then checks if it can color segment
the ball object.

• State is a set of observed predicates.

Robot Behavior A robot behavior is activated by the human demon-
strator using an appropriate vision-based cue such as a colored card
and can be executed on any object. Once associated with an object,
a task-specific action is generated which is used for the task spe-
cific plan. The task specific actions on the other hand can only
be executed on the specific object types associated with the input
arguments. The object types in our case correspond to specific ob-
ject color. The task specific actions are also generated during the
demonstration phase.

• searchObject_objecttype : This action is performed by ex-
ecuting the following physical actions in order. (a) If ob-
ject is not detected, follow table for a few time steps, else
stop, (b) Move close to table and look for object, (c) If ob-
ject is detected, stop, else go back to (a). The task specific
action is renamed with the appropriate object type such as
searchObject_type1 for an object of type type1 .

• pickObject_objecttype : This action is performed by execut-
ing (a) While object is not in center of image, move to align
with object, (b) Grasp object with both hands.

• carryObjectToBasket_objecttypeList : This action is performed
by executing the following physical actions: (a) If basket
is not detected, hold object and follow table for a few time
steps, else stop, (b) Move close to table and look for basket,
(c) If basket is detected, stop, else go back to (a).

• dropObjectIntoBasket_objecttypeList : This action is performed
as follows: (a) Release hands to drop the object.

Representing World Observations The effect of executing a
behavior results in a change in the state of the world. In order to
obtain the state of the world, the robot needs to have a knowledge
of the relevant observations and know what measurements are re-
quired for each observation. These observations are represented in

the plan as propositions. Thus, in addition to the behaviors, task
specific actions and objects, the robot also contains a list of propo-
sitions with appropriate visual measurements. The set of propo-
sitions and the associated vision-based measurements used by the
robot are as follows:

• closeToObject_objecttype Vision-based measurement checks
whether the robot is standing sufficiently close to the object
by measuring the objects relative distance from the robot.
The proposition is set to true when the object is detected
within a fixed pre-defined threshold τ from the robot.

• holdingObject_objectype To detect whether the robot is hold-
ing an object, it moves its arms to the level of its head and
checks whether it can segment the appropriate object.

• in_objectypeList This is a binary predicate where the vision-
based measurement checks which pair of objects in the ar-
gument list of action satisfy the condition for in . One ob-
ject obj1 is said to be inside the other object obj2 when the
bounding rectangle of the obj1 is enclosed by the bounding
rectangle of obj2 .

4. TEACHING TASKS WITH REPETITIONS
The teaching approach consists of a demonstration phase and a

learning phase. In the demonstration phase, the robot executes the
sequence of robot behaviors on specific objects as indicated by the
human. It then instantiates task specific actions from the behaviors,
fills in the appropriate preconditions for those actions, and then
learns a task specific plan for the executed action sequence.

4.1 Demonstration Phase
Demonstration is the first step in the teaching approach. To

demonstrate the action sequence, the demonstrator indicates the ap-
propriate actions and the objects relevant to the same action. Every
action is associated with a specific color that can be identified by
color thresholding upon viewing a correspondingly colored action
card. The human indicates the objects by moving a laser pointer
across the object. The robot tracks the laser spots and computes
the region of interest as the bounding box enclosing all the tracked
spots. It then identifies the appropriate object by matching the tar-
get model such as a color histogram or by applying an average
(RGB) color threshold on the region of interest. As the goal of
problem is not robust sensing, we eliminate perceptual ambiguities
such as occlusions.

4.2 Learning Phase: Filling Action Precondi-
tions and Effects

The first step to recognizing the plan for the demonstrated task
is to extract the task specific action preconditions and effects. The
algorithm for filling the action preconditions and effects is depicted
in Algorithm 1. By operator we mean the task specific action asso-
ciated with an object type. A grounded action on the other hand is a
task specific action associated with a particular object correspond-
ing to an object type. For task specific action definition extraction,
we make use of the multiple occurrences of the same action instan-
tiated on different objects but of the same type. In our case, the
types correspond to the color. Given that the demonstrator is as-
sumed to guide the robot through the actions in the correct order, in
general the states preceding an action will contain all the predicates
necessary to execute the same action. This in turn simplifies the ex-
traction of the preconditions and effects. However, in the absence
of multiple instantiations, a different learning algorithm such as [2]



Algorithm 1 Precondition and Effect Filling
Input: Grounded actions 〈a1, . . . ,aN〉 from demonstration
Input: Preceding and Succeeding states 〈{−Sa1 ,

+Sa1} . . .{−SaN ,+SaN }〉
for each action

Output: Grounded actions 〈a1, . . . ,aN〉 with filled preconditions and ef-
fects

1: GROUP grounded actions into Operators O1, . . . ,Ok , s.t.
∀Oop,op=1...k,@a j,ak{a j,ak ∈ op}, SUBSTITUTE(a j,ak) is in-
valid

2: For all Operators op do
3: Collect the action states {−Sa j ,

+Sa j}∀ ja j ∈ op.
4: Remove inconsistent action states.
5: For all Operators op do
6: Get Preconditionsop←− −Sa1 ∧ . . .∧−Sak ,a1, . . . ,ak ∈ op
7: Effects:
8: If exists effect ex

a j
,a j ∈ op∧∃ak ∈ op where

∀yey
ak SUBSTITUTE(ex

a j
,ey

ak ) is invalid then
9: If exists predicates cW={w1,...,wm} ∈ −Sa j where

arg(ex
a j

) ∩ arg(cW ) 6= /0 ∧
∀i,i6= j, SUBSTITUTE(ex

a j
,eyai) is invalid ∧ cW 3

−Sai ,where ai,a j ∈ op then
10: Add conditional Effect condE f f ectop←− {cW ,ex

a j
}

11: Else
12: Add disjunctive Effect E f f ectsop←− ex

a j
∨E f f ectsop

13: Else If ∃ effect ex
a j
∈ ∀i{4〈−Sai ,

+Sai 〉}ai,a j ∈ op then
14: Add conjunctive Effect E f f ectsop←− ex

a j
∧E f f ectsop

15: Fill in Preconditions and Effects for each action a j ∈ op

will be more appropriate than the one presented in this work.

As shown in Algorithm 1, the inputs to the algorithm consists of
the sequence of grounded actions obtained from the demonstration,
and the corresponding states associated with each action. A state
with negative ’−’ superscript such as −Sa j corresponds to the state
prior to executing the action a j, while the state with positive super-
script ’+’, such as +Sa j corresponds to the state following the same
action.

The first step in the Algorithm 1 is to group the grounded actions
into their corresponding operators. The SUBSTITUTE procedure
as shown in Line 1 of Algorithm 1 checks for the equality of two
actions. In other words, substitute corresponds to replacing the pa-
rameters of one action for the other. So two grounded actions ai,a j
correspond to the same operator when the result of their substitu-
tion is identical. Note that, here we are just comparing the action
name and the arguments.

The next step of the algorithm is to collect the set of states cor-
responding to every action in each operator, following which, any
inconsistent states are removed as depicted in Lines[2-4]. An in-
consistent state is one where the intersection of the same (preced-
ing) state corresponding to a specific grounded action with at least
T (preceding) states corresponding to T grounded actions for the
same operator is an empty set. In other words, for a pair of states
−Sak ,

+Sak abbreviated as −S,+S,

Inconsistent(−S,+S) =
{

If ∑
m
i=1{−Sak ∩

−Sai}→ { /0}> T, true
Else, false

Only the states preceding the action are checked for inconsistency.
However, both of {−Sa j

+Sa j} from an action a j will be removed
when −Sa j is found to be inconsistent. The inconsistency check
is performed to ensure that the precondition list of an operator is

never an empty set. It is assumed that all preconditions for an ac-
tion are conjunctive.

Next, the preconditions for the operator is obtained as the intersec-
tion of all the consistent preceding states for the associated actions
as shown in Line 6 of the Algorithm 1. The procedure for obtain-
ing the effects is depicted in Lines [8-14] of the Algorithm 1. The
effects of a grounded action a j corresponds to the set of predicates
in the succeeding state +Sa j occurring mutually exclusively from
the preceding state −Sa j . This is represented as 4{−Sai ,

+Sai} on
Line 13 of Algorithm 1. An effect ex

a j
of a grounded action a j for

operator op is added as a conditional effect when,

• there does not exist a substitution for the same effect ex
a j

in
at least one other grounded action ak in the same operator,

• there exists one or more predicates cW ∈ −Sa j where the in-
tersection of the argument list of cW with ex

a j
is not an empty

set and there exists no substitution for the same predicates in
any state −Sak where substitution for the effect ex

a j
is invalid.

However, when no condition can be found, the effect ex
a j

is added as
a disjunctive effect to the existing set of effects. Finally, the set of
effects that occur in all the consistent action instantiations are added
as conjuctive effects. At the end of this stage in learning, each ac-
tion is represented in the classical PDDL format with preconditions
and effects. As an example, the dropObject is represented as,

(:action dropObject_type1
:parameters (?obj1 - type1 ?obj2 - type2)
:preconditions (and (holdingObject_type1 obj1)

(closeToBasket_type2 obj2))
:effects (and (in obj2 obj1)))

Figure 2: Representation of task specific dropObject action

4.3 Extracting Plans With Repetitions
Using the action definitions and the demonstration sequence, we

then extract a partial ordering graph of the individual actions in
the plan using [10] which links two steps in the demonstration that
satisfy a producer-consumer relation where the producer step has
an effect which is a precondition for the consumer step. The pre-
condition is the rationale for the link. The last phase in learning
from demonstration is to extract an executable planner from the
demonstrated action sequence. In this work, we follow the similar
definition as in programming languages for the loops. A sequence
of actions forms a loop if and only if the same sequence of actions
are repeated over different instances of the loop variable and there
are no ordering constraints between actions occurring at different
loop variable instances. The algorithm for learning the generalized
plans from demonstration is depicted in Algorithm. 2. The first
step transitively reduces the partial order graph for the action steps
in the demonstration sequence to simplify computation for loop de-
tection. In the next step, the actions are parameterized such that the
grounded actions are replaced by actions with variables. Finally,
the different steps and loops are arranged in the dependency order
as obtained from the partial orderings. A set of actions forming
a loop is merged with another loop when the actions in one loop
are connected to the actions in the other loop through the producer-
consumer orderings. Note that this merging still maintains the par-
allel execution of the steps along different branches of the merged
loop.



Pick Object Carry Object Drop Object

Figure 3: Example sequence showing the execution of the task during demonstration.

Algorithm 2 Learning Looping Plans from Example
Input: Partial Order (PO) Graph
Output: Generalized Looping Plan
1: Transitively reduce PO Graph
2: Parameterize trace step actions
3: Detect LOOPS(Actions a1, . . . ,aN )
4: Order Steps by links.

5. ILLUSTRATIVE EXPERIMENT
Experiments were performed in indoor setting with the experi-

mental setup as shown in Fig. 1. The objective of the experiment
was to test whether the robot could learn a correct plan from the
demonstrated sequence of actions. The domain is controlled such
that no perceptual ambiguity such as occlusions or illumination
variations occur. While restrictive for real world applications, ro-
bust sensing and planning with robust sensing is not the focus of
this paper.

An example demonstration sequence consisted of the steps searchOb-
ject, pickObject, carryObjectToBasket, dropObject for two differ-
ent balls repeated one after the other in the same order. An exam-
ple of the task executed by the robot during the demonstration is
depicted in Fig. 3. The plan learned from this demonstration se-
quence is depicted in Fig. 4. As shown, the robot is correctly able
to learn an executable plan for the demonstrated sequence.

while(?loopvar : type1)
if(haveObjectToSearch_type1 loopvar) then

(searchObject_type1 loopvar)
if(closeToObject_type1 loopvar) then

(pickObject_type1 loopvar)
if(holdingObject_type1 loopvar) then

(carryObjectToBasket_type1_type2 loopvar obj2)
if(and (holdingObject_type1 loopvar)

(closeToObject_type2 obj2))
(dropObjectToBasket_type1_type2 loopvar obj2)

Figure 4: Example task specific plan.

6. CONCLUSIONS
In this work, we present an approach for teaching complex se-

quential tasks with repetitions through demonstration. We present
a contribution where using the set of generic behaviors or skills and
a demonstration, the robot can extract the task specific action defi-
nitions and finally a plan with repetitive execution of a sequence of
actions. Additionally, the system has been implemented on a real
world domain where the robot successfully transforms its executed

actions and vision-based sensed measurements into an instantiated
plan that can be used for learning an task specific planner.

7. ACKNOWLEDGEMENTS
The authors would like to SONY for making the QRIOs available

to us for this project. The authors would also like to thank SONY
for also making available the robot specific software libraries.

8. REFERENCES
[1] C. Breazeal, G. Hoffman, and A. Lockerd. Teaching and

working with robots as a collaboration. In Proc. Autonomous
Agents and Multiagent Systems, pages 1028–1035, 2004.

[2] Y. Gil. Learning by experimentation: incremental refinement
of incomplete planning domains. In Proc. Intl. Conf. on
Machine Learning, 1994.

[3] K. Haigh and M. Veloso. Interleaving planning and
execution for asynchrnous user requests. Autonomous
Robots, 5(1):79–95, 1998.

[4] N. Koenig and M. Mataric. Demonstration-based behavior
and task learning. In Working Notes AAAI Symposium To
Boldly Go Where No Human-Robot Team Has Gone Before,
2006.

[5] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by
watching: extracting reusable task knowledge from visual
observation of human performance. IEEE Trans. on Robotics
and Automation, 10(6):799–822, 1994.

[6] T. Lau, S. Wolfman, P. Domingos, and D. Weld.
Programming by demonstration using version space algebra.
Machine Learning, 53(1-2):111–156, 2003.

[7] M. Nicolescu and M. Mataric. Models and Mechanisms of
Immitation and Social Learning in Robots, Humans, and
Animals: Behavioral, Social and Communicative
Dimensions, chapter Task learning through immitation and
human-robot interaction, pages 407–424. 2006.

[8] N. Nilsson. Shakey the robot. Technical Report 323, SRI
International, AI Center, SRI International, Menlo Park, CA,
1984.

[9] P.E.Rybski, K. Yoon, J. Stolarz, and M. Veloso. Interactive
robot task training through dialog and demonstration. In
Proc. Human Robot Interaction Conf., 2007.

[10] E. Winner and M. Veloso. Analyzing plans with conditional
effects. In Proc. Intl. Conf. Artificial Intelligence and
Planning Systems, pages 23–33, 2002.

[11] E. Winner and M. Veloso. Loopdistill: Learning
domain-specific planners from example plans. In In ICAPS
Workshop on Planning and Scheduling, 2007.




