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ABSTRACT
We consider the problem of distributed exploration or cover-
age of an unknown environment by a swarm of mobile mini-
robots that have limited memory, computation and commu-
nication capabilities. We describe a novel mechanism of dis-
tributed coverage of an unknown environment by swarmed
robots that can dynamically merge and split into structured
teams or exchange team members to improve the efficiency
of solving the coverage problem. Our mechanism combines
the technique of swarm-based flocking with coalition games
to enable robots dynamically select utility maximizing teams
that move in formation.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous Ve-
hicles; I.2.11 [Artificial Intelligence]: Distributed Artifi-
cial Intelligence—Multi-agent Systems

Keywords: Swarming, flocking, coalition game, distributed
coverage.

1. INTRODUCTION
Over the past few years, techniques from emergent com-

puting such as swarming have been employed increasingly
as an attractive mechanism to design large teams of mobile
mini-robots. In swarmed systems, complex behaviors are
manifest at the global level by encoding simple behavior pat-
terns on the individual swarm units. Swarmed robot systems
are particularly attractive for building large robot teams be-
cause they are inherently distributed and robust against fail-
ures of a significant number of the swarm units(robots), and,
relatively inexpensive to build because of the simple behav-
ior requirements on each robot. However, the simplicity and
low cost of each mini-robot makes each robot constrained
in the amount of memory, resources (e.g., sensors), compu-
tation and communication capabilities it has available on-
board, and, limits the complexity and efficiency of problems
that can be solved using swarmed multi-robot systems. Our
work in this paper is based on the insight that distributed
coverage of an unknown environment using swarmed robots
can be improved if the robots are capable of forming small
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structured teams and dynamically adapting the structural
formation and membership in each team based on the per-
formance of the robots and the operational constraints in
the environment. Previous research in robot team formation
has been largely inspired by Reynolds’ model of distributed
flocking behavior observed in herds or flocks of animals[6].
In this model, each robot in a robot team adapts its mo-
tion and position based on the current position and heading
of other team members such as a team leader or an im-
mediate neighbor(s). However, the flocking model does not
provide mechanisms to dynamically adapt the membership
of robot teams based on team performance. To address the
issue of dynamic team formation, we use a mechanism based
on coalition games in multi-agent systems. Specifically, we
make two contributions in this paper to address swarmed
multi-robot coverage of unknown environments: (i) We de-
scribe a robot team formation mechanism based on flocking
behavior that allows multiple robot teams to adapt their for-
mation in the presence of obstacles and narrow passages. (ii)
We describe a coalition game based mechanism that enables
robots having inefficient behavior in a team to dynamically
select and join teams to improve the system’s performance.

2. RELATED WORK
Most research on formation of robot-teams using distributed

techniques has been inspired by Reynolds’ seminal work on
the mobility of flocks[6]. Following this model, [11] de-
scribe mechanisms for robot-team motion while maintaining
specific formations where individual robots determine their
motion strategies from the movement of a team leader or
neighbor(s). In contrast to these approaches, [4] describes
techniques for robot team formation without using global
knowledge such as robot locations, or the positions/headings
of other robots, while using little communication between
robots. However, in most of these approaches, achieving
performance efficiency is not a principal objective, and con-
sequently, none of these flocking-based approaches enable
robots in a team to dynamically select and change teams
to improve the system performance. Complementary to the
flocking-based model, [10] uses a contract-net protocol to
realize multi-robot coalitions, [9] uses robot team formation
inspired by molecular motion in physics, [5] uses coordina-
tion in agent teams inspired by SharedPlans. Multi-agent
coalition formation has been an active research topic within
multi-agent systems[7, 8]. However, almost all these these
techniques are computationally expensive and require time
of the order of days to months to execute on relatively small
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Figure 1: State transition diagram for a robot moving

in formation.

number (e.g., 10-50) of agents. Therefore, they are not read-
ily amenable for use within the memory and computational
constraints on mobile mini-robots, and, the near-real time
motion requirements for each robot in our system.

3. TEAM-BASED, SWARMED MULTI-ROBOT
COVERAGE

The motivation behind our team-based coverage algorithm
is to improve the coverage of the environment in terms of
time and redundancy by using robot teams organized in
a coverage- maximizing formation instead of using single
robots. First, we define some important parameters that
are used to implement our team-based coverage algorithm.

Definition 2.1 Team: A robot team in our system com-
prises a group of robots with a contiguous sensor swathe
between themselves. Let t ⊂ R be a subset of robots. t is
considered a team if every robot r ∈ t has the same head-
ing and every robot maintains a distance balance criterion of
maintaining a separation equal to the diameter of a robot’s
sensor cone (ds), measured along the direction orthogonal to
the team’s motion, between itself and at least another robot
in the same team t. The distance balance criterion of a team
ensures that the combined region covered by the sensors of
robots in the same team remains connected, while the same
heading of each team member ensures that this region does
not get disconnected over time due to the team’s movement.
Definition 2.2 Robot Redundancy(dr): A robot r’s cover-
age is redundant in a team if the region covered by its sen-
sor has already been covered either partially or completely
by another robot belonging to the same team. dr denotes
the fraction of the area covered by r’s sensor that has al-
ready been covered by another robot’s sensor in the same
team. In this paper, we consider dr ∈ {0, 1} to denote non-
redundant(dr = 0) or completely redundant(dr = 1) cover-
age.
Definition 2.3 Team Redundancy(Dt): The coverage re-
dundancy of a team t is given by the ratio between the

number of robots in team t with redundant coverage and
the total number of robots in the team.

Dt =
| r |

| t |
| r ∈ t ∧ dr = 1

Definition 2.4 Team Utility(Ut): Team t’s utility is de-
fined as Ut = 1 − Dt. When no robot in the team does
redundant coverage(Dt = 0) Ut = 1. On the other hand,
when all robots in the team, except one, are performing re-
dundant coverage by following immediately behind another
team member(Dt = 1

|t|
) Ut = 1 − 1

|t|
.

Definition 2.5 Robot Utility(ur,t): The utility derived by
robot r from participating in team t is given by:

ur,t =

{

(1 − dr) + Ut

Tmax−|t|+1
, if | t |≤ Tmax,

0 if | t |> Tmax

where Tmax is the maximum allowable size for a team. The
maximum possible value for a robot’s utility is ur,t = 2 when
none of the robots in the team perform redundant coverage
(dr = 0 and Ut = 1) and the team has the maximum possi-
ble size (| t |= Tmax). When a robot’s team size is less than
the maximum, it receives a utility ur,t ∈ [1, 2). We call this
tolerable utility for the robot. However, when a robot per-
forms redundant coverage in a team, its utility ur,t ∈ [0, 1).
We call this inadmissible utility for the robot. The robot
utility function described above achieves two objectives to-
wards improving the system’s performance. First, it dis-
courages redundant coverage by a robot by assigning lower,
inadmissible utilities to redundant coverage. Secondly, the
utility function ensures that robots derive a higher utility
from participating in larger teams by assigning lower utili-
ties to robots forming smaller teams, or worse, covering the
region individually. Therefore, it prevents the team-based
coverage from degrading into individual coverage.

A high-level description of the controller for a robot in our
team-based coverage system is shown in Figure 1. We as-
sume that robots are initially deployed into the environment
in teams of size Tmax. In Figure 1, each robot that is part
of a team moving in formation checks its utility at certain
intervals to see if the utility it is obtaining from participat-
ing in the team can be improved. If its current utility is the
maximum possible, it continues with its current formation
in the current team. If a robot moving in formation within a
team encounters an obstacle, it alters its direction to avoid
the obstacle. However, while avoiding the obstacle, other
team members who did not encounter the obstacle can con-
tinue moving in formation. Therefore, after a robot avoids
an obstacle it tries to reenter at its position in the team
formation before encountering the obstacle. If it is able to
retain its earlier position in the team, the team continues
in formation. Otherwise, the robot tries a new formation
in the same team. However, this new formation might be
redundant for the robot (e.g., it is directly behind another
robot in the same team and covers the same area as its pre-
ceding robot). If the formation is redundant, its utility is
not the maximum possible utility for the set of robots in
the team. The robot that is redundant in the formation
then tries to join another team, if it has any other teams
within its communication range. If the robot succeeds in
joining another team, it becomes a member of that team.
Otherwise, it continues to move individually using the Man-
hattan distance heuristic described in [2], because the utility
of a robot moving individually (= 1 + 1

Tmax
) is higher than
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its utility from redundant coverage (= 0 +
1− 1

|t|

Tmax−|t|+1
) in

a team. When the individually moving robot comes within
communication range of another team that it can join, it
attempts to join that team and move in formation if that
yields a higher utility than the utility from moving individ-
ually. In the following sections, we describe the different
functionalities of the robot to implement this controller.

3.1 Team Formation
Robots in a team must have a distributed mechanism to

maintain a team formation while moving as well as adapt the
formation in response to environment changes such as obsta-
cles, walls or passages encountered in the team’s path. Our
formation maintenence mechanism is based on Reynolds’
flocking model and uses neighbor-referenced separation[1]
to adjust robot positions to retain formation while moving.
In our system, each robot in a team has to maintain the
distance balance criterion with its immediate neighbors in
the team at each time step. To achieve this, each robot
r in a team first observes the locations of its two adjacent
(nearest two) neighbours from the locations stored within
its communication map cr. If the distance balance criterion
is satisfied, the robot continues with its current speed and
heading. On the other hand, if the distance balance cri-
terion is not satisfied between the robot and its neighbors,
the robot must adjust its speed to maintain team formation.
To realize this, first the robot calculates its desired location
for the next time step that would enable it reattain the dis-
tance balance criterion w.r.t its neighbors. It then adjusts
its speed and heading so that it either reaches this desired
location, or reaches as close as possible to it, in the next
time step.

Proposition: (Distance Balance Criterion.) The opti-
mal formation in a team that ensures maximum coverage by
its team members is obtained when adjacent pairs of robots
in the team are separated by a distance that equals the di-
ameter of their sensor cones, measured along the orthogonal
to the team’s heading.(Proof omitted for space)

3.2 Team Dispersion
To avoid redundant coverage between the regions covered

by different teams, teams moving in formation should dis-
perse away from each other. To achieve this, we can use a
technique similar to the Manhattan distance heuristic used
for individual swarm-based coverage (described in [2]) to
make robot teams disperse away from each other. However,
if every individual robot in a team tries to implement the
Manhattan distance heuristic to move away from robots in
other teams while simultaneously staying in formation with
its own team members, it would require a very complex, per-
haps infeasible procedure, that would be difficult to realize
within the robot’s memory and computational constraints.
To implement team dispersion in our system we identify a
special robot in each team called the team’s core robot. The
core robot is the only member in the team that does not
use the neighbor-referenced separation for team formation,
but instead, uses the Manhattan distance heuristic to dis-
perse away from core robots in other teams. This mecha-
nism manifests itself in every member of a team, except the
core robot, following the core-robot using neighbor refer-
enced separation, while the teams themselves disperse away
from each other to avoid redundant coverage.

Core Robot Selection. To select the core robot, every

time the membership of a team changes (i.e.,every time a
robot joins or leaves a team), every robot in the team uses a
breadth-first-search on the locations stored within its com-
munication map, starting from its current location upto a
distance of Tmax×ds, to determine the other members com-
prising the team. Each robot then determines the centroid
of the points consisting of the locations of its team members
including itself, and, selects the robot that is closest to this
centroid as the team’s core robot.

Checking for Redundant Coverage Within Teams.

As mentioned in [2], each robot r maintains a local coverage
map of radius µr centered at robot r’s current location. The
coverage map contains the locations within µr that were
covered by the robot itself or neighboring robots over the
last th time steps. For our team-based coverage, we set the
radius µr = Tmax × ds, to ensure that the coverage map of
a robot encompasses the furthest team member in its team
when the team size is maximum. While moving in formation
in a team, if the desired location calculated by a robot to
maintain formation corresponds to a location that is already
denoted as covered within its coverage map, the robot infers
that it is performing redundant coverage within the team.

3.3 Dynamic Team Formation
When a robot derives inadmissible utility in a particular

formation, it first checks to see if it can improve its utility
to a tolerable value (between 1.0 and 2.0) by making a new
formation within the same team. However, if the robot is
unable to find a utility improving formation (e.g., the ob-
stacle or passage that caused it to change formation is still
there) in the same team it attempts to join another team.

Let rc denote a robot that is currently participating in
a team tc and deriving inadmissible utility. As shown in
Figure 1, rc then attempts to change its membership by
joining another team. To enable rc select a suitable team, it
should be able to calculate its expected utility from joining
a team tj that it is aware of. However, in our system, each
robot does not keep track of the location and membership
of other teams in the environment due to its memory and
communication constraints. Therefore, when rc attempts
to join another team, it has to dynamically compute the
location, heading and configuration in each team within its
communication range, so that it can calculate an expected
utility of joining another team and select the best possible,
expected utility maximizing team. The algorithm used by
a robot rc to select another team maximizes its expected
utility. Here, robot rc uses information about the location
and heading of other robots from its communication map. rc

first determines the teams within its communication range
as connected components in a graph with edges less than ds

(sensor diameter) in length, using Kruskal’s algorithm[3]. It
then calculates the redundancy in the team, the location of
the core robot of the team and the heading of the team from
the locations and heading of the team members. Finally,
it selects the team that maximizes the weighted product
of the team’s utility, its distance from the team’s core and
its alignment with the heading of the team. A challenging
issue encountered by a robot wishing to change teams is that
it might miscalculate the number of team members in the
teams it expects to join because of some of its destination
teams’ members being outside its communication range. In
such a scenario, we use a coalition game based framework,
where the robot wishing to change its team considers the
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Figure 2: Percentage of area covered with 5 agents in a

square environment for different coverage strategies.

Teamwork
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Random

Figure 3: Percentage of area covered with 10 agents in

a passage environment for different coverage strategies.

different teams it is aware of as possible coalitions it can
join. It then builds a coalition tree and dynamically prunes
the nodes of the coalition tree based on the utility of the
coalition(node) as the different teams move closer or further
away from it. Finally, the coalition tree is pruned to a single
node corresponding to the team with the highest perceived
utility for the team-changing robot to join.

4. EXPERIMENTAL RESULTS
For our experiments we have used 5−10 simulated robots

within the Webots robot simulation platform. Each robot is
simulated as the DifferentialWheels robot, whose speed and
direction are controlled by changing the relative rotation
speed between the two wheels. The standard speed of each
wheel was set to 0.1 meter/time unit. Robots measure 0.1
meter ×0.1 meter. We consider two scenarios for the envi-
ronment in our experiments. One is in the shape of a square
measuring 10 × 10 meter2; the other is in the shape of two
squares which are of the same size as the former square and
connnected by a 1× 4 meter2 passage. We have tested both
scenarios with 5 and 10 robots that are able to dynamically
form and split into smaller teams.

In our first set of experiments shown in Figure 2, we ob-
serve the coverage of a square shaped environment with
different coverage strategies. In the random strategy, each
robot moves in a random direction when it encounters a wall
or another robot. In the Manhattan distance based strategy,
a robot selects the next timestep’s direction as the direction
that maximizes the Manhattan distance between itself and
others robots within its communication range. In the team-
work strategy, each robot moves in a team-like formation

using the method introduced in this paper. As shown in
Figure 2, the strategy that uses the random method gets the
least coverage. The strategy with team formation performs a
5−10% better than the Manhattan distance-based coverage
strategy. In our second set of experiments, we analyzed the
effect of these three strategies in an environment consisting
of two square rooms connected by a narrow passage. All the
robots started from one of the rooms. Once again, the ran-
dom method gets the worst coverage, as shown in Figure3.
The team-based strategy shows the best coverage time be-
cause the teams are able to split and merge into sub-teams
and a reasonable number of robots are able to cross the pas-
sage as a team to reach into the other room. On the other
hand, for the random walk and Manhattan distance-based
strategies, most robots remain limited within the room from
which they start and even if a few robots are able to cross
into the other room through the passage, most robots still
remain in the room they started in and are unable to dis-
tribute themselves evenly across the two rooms.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a novel team-based, swarmed

strategy for dynamic coverage of an unknown environment
that combines a flocking model with coalition games. We
are currently testing our algorithms on e-puck mini-robots
to study their behavior in covering unknown environments.
We believe that addressing these issues will solve some of
the challenges in coordination between mini-robots with con-
strained memory and communication capabilities for differ-
ent problems, including area coverage.
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