
A Model of Contingent Planning for Agent Programming
Languages

Yves Lespérance
Dept. of Computer Sci. & Eng.

York University
Toronto, Canada

lesperan@cse.yorku.ca

Giuseppe De Giacomo
Dip. Informatica e Sistemistica
Univer. di Roma “La Sapienza”

Roma, Italy
degiacomo@dis.uniroma1.it

Atalay Nafi Ozgovde
Dept. of Computer Science

University of Toronto
Toronto, Canada

atalay@cs.toronto.edu

ABSTRACT
In this paper, we develop a formal model of planning for
an agent that is operating in a dynamic and incompletely
known environment. We assume that both the agent’s task
and the behavior of the agents in the environment are ex-
pressed as high-level nondeterministic concurrent programs
in some agent programming language (APL). In this con-
text, planning must produce a deterministic conditional plan
for the agent that can be successfully executed against all
possible executions of the environment program. We han-
dle actions with nondeterministic effects, as well as sensing
actions, by treating them as actions that trigger an envi-
ronmental reaction that is not under the planning agent’s
control. Our model of contingent planning is specified for a
generic APL with a transition semantics. Within this model,
we devise a general procedure for computing the contingent
plans. We also show how the model can be instantiated in
the situation calculus with programs for the agent and the
environment expressed in ConGolog, and we describe an im-
plementation of the planning mechanism in this case.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—ntelligent agents, languages and structures

General Terms
Languages

Keywords
Agent programming languages, contingent planning

1. INTRODUCTION
Most agents operate in dynamic and incompletely known

environments. They must use their sensors to acquire the in-
formation they need and they must adjust their behavior to
cope with the contingencies that arise. A popular approach
to designing such agents involves specifying a library of hi-
erarchically structured plans and reactively executing these
plans on-line, using sensed information to select plans, mon-
itor their execution, and recover from exceptions/failure.

Cite as: A Model of Contingent Planning for Agent Programming Lan-
guages, Lespérance, Y., De Giacomo, G. and Ozgovde, A.N., Proc. of
7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.),

Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Various BDI agent programming languages [8, 11, 14] have
been proposed to support this approach, which leads to very
responsive agents. But note that these systems do not per-
form lookahead or planning in the traditional sense; actions
are executed as soon as they are selected. Thus the “BDI
agent programming” approach works well if good plans can
be specified for all objectives that the agent may acquire and
all contingencies that may arise. However, there are often
too many possible objectives and contingencies for this to be
practical. The agent can also search over the available plans
by actually executing them, but this only works if choices
can be undone.

To address this problem, some proposals have been made
to incorporate lookahead planning mechanisms in agent pro-
gramming languages (APLs). One line of work aimed at this
is the Golog language [9] and its successors. Golog is a pro-
cedural language defined on top of the situation calculus,
a predicate logic framework for reasoning about action. In
this approach, instead of specifying just a goal, the user pro-
vides a description of how to achieve the goal in the form of a
high-level program. This is typically a sketchy nondetermin-
istic program that incorporates domain-specific knowledge
of how to achieve the goal. The actions and predicates used
in the program are specified in a situation calculus domain
action theory. The Golog interpreter must search to resolve
the nondeterministic choices in the program to find a suc-
cessful execution. In doing this, it reasons about the precon-
ditions and effects of the actions like a classical planner, but
in a search space that is constrained by the the program.
ConGolog [4] is an extension of Golog that supports concur-
rent processes. IndiGolog [5] is another extension that al-
lows the programmer to control which parts of the program
are planned over and supports online sensing and execution
monitoring. Some authors have investigated how planning
with Golog task specifications can be performed using state-
of-the-art planners. [2] develops an approach for compiling
Golog-like task specifications together with the associated
domain definition into a PDDL 2.1 planning problem that
can be solved by any PDDL 2.1 compliant planner. [1] de-
scribes techniques for compiling Golog programs that in-
clude sensing action into domain descriptions that can be
handled by operator-based planners.

Recently, [14, 15] have proposed the CanPlan and Can-
Plan2 languages, that incorporate a hierarchical task net-
work (HTN) planning mechanism into a classical BDI agent
programming language. Earlier less formal work on planning
in APLs is reviewed in [14].

Both IndiGolog and CanPlan only generate sequential

477

May,12-16.,2008,Estoril,Portugal,pp.477-484.

plans. They cannot produce conditional plans that branch
on the outcome of a sensing action or nondeterministic world-
changing action. This is necessary in many applications. In
[12, 6, 13], models of planning with incomplete knowledge
and sensing actions are developed. [12] discusses how a plan-
ning/search construct for IndiGolog can be defined based on
its model. However, these accounts of planning assume that
the world only changes as a result of the agent’s actions and
that non-sensing actions are deterministic.

In this paper, we will generalize this work and develop a
model of planning that deals with a dynamic environment.
Our approach in doing this will be to model the possible
behaviors of the agents in the environment as a nondeter-
ministic concurrent program that runs concurrently with the
agent program, but at a higher priority. The planner will
search for a deterministic conditional plan such that for all
the executions of this conditional plan concurrently with the
environment program, the agent’s high-level program is suc-
cessfully executed. We handle actions with nondeterministic
effects, as well as sensing actions, by treating them as actions
that trigger an environmental reaction that is not under the
planning agent’s control. Our model of contingent planning
is specified for a generic APL with a transition semantics.
Within this model, we devise a general procedure for com-
puting the solution conditional plans. We also show how
the model can instantiated in the situation calculus with
programs for the agent and the environment expressed in
ConGolog. We describe an implementation of the planning
mechanism in this case.

We should point out that there has been much previ-
ous work on conditional/contingent planners. However, al-
most none of this work deals with procedurally specified
tasks/behaviors or how contingent planning might fit in an
APL (one exception is [3]). Note that our model is lim-
ited to contingent planning. We model other agents as mere
nondeterministic processes rather than as rational decision
makers (as in game theory). We also do not model differ-
ences in the knowledge that different agents may have. This
limits the applicability of our approach, but makes it easier
to implement.

In the next section, we sketch some examples to illus-
trate the range of agent-environment interactions that our
approach can support. After that, we describe how contin-
gent planning tasks can be specified in a generic APL. Then,
we develop our formalization of what is a solution to such
a contingent planning problem, and prove some properties
about it. After that, we show how the abstract APL seman-
tic model that we used can be concretely specified for Con-
Golog and the situation calculus. Then, we discuss an im-
plementation of our formalization in Prolog and IndiGolog.
Finally, we conclude by reviewing the paper’s contributions
and discussing open problems.

2. SOME EXAMPLES IN CONGOLOG
Let us show how our contingent planning model works

by giving some examples of environments and agent tasks
specified as programs. We will express these in ConGolog [4].
This APL provides the following programming constructs:

α, primitive action
φ?, wait for a condition
δ1; δ2, sequence
δ1 | δ2, nondeterministic branch

π ~x. δ, nondeterministic choice of argument
δ∗, nondeterministic iteration
if φ then δ1 else δ2 endIf, conditional
while φ do δ endWhile, while loop
δ1 ‖ δ2, concurrency with equal priority
δ1 〉〉 δ2, concurrency with δ1 at a higher priority

δ||, concurrent iteration
〈 ~x : φ→ δ 〉, interrupt

p(~θ), procedure call

Among these constructs, we notice the presence of of nonde-
terministic constructs. These include (δ1 | δ2), which nonde-
terministically chooses between programs δ1 and δ2, π ~x. δ,
which nondeterministically picks a binding for the variables
~x and performs the program δ for this binding of ~x, and
δ∗, which performs δ zero or more times. ConGolog also
provides constructs for concurrent programming. (δ1 ‖ δ2)
expresses the concurrent execution (interpreted as interleav-
ing) of the programs δ1 and δ2. In (δ1 〉〉 δ2), δ1 has higher
priority than δ2, and δ2 may only execute when δ1 is done
or blocked. An interrupt 〈 ~x : φ → δ 〉 triggers when for
some binding of ~x, the condition φ holds; then the body δ
is executed for this binding; afterwards the interrupt may
trigger again. Synchronization can be done by waiting for
conditions involving fluents and performing actions that set
them. See [4] for a detailed account of ConGolog.

Now, let us sketch some examples of modeling contingen-
cies and environment dynamics, as well as planning agent
tasks as ConGolog programs. Assume a typical blocks world
domain formalized in the usual way, and a planning agent
PA that wants to build a tower. Our first example involves
an interfering agent IA that sometimes moves blocks that
the planning agent has stacked back to the table. We could
specify IA’s behavior as follows:

proc interferingAgtBehavior(IA, n)
(n ≤ 0?)|
((n > 0 ∧ LastActionNotBy(IA) ∧ ∃x, yOn(x, y))? ;

[π x.∃yOn(x, y)?;moveToTable(IA, x);
interferingAgtBehavior(IA, n− 1)] |

[noOp(IA); interferingAgtBehavior(IA, n)])
endProc

Note that the n parameter is a bound on the number of
interfering moveToTable actions that can be performed by
the IA agent; without such a bound, it would be impossible
for our planning agent to devise a plan that would achieve
having a tower for all executions of the environment.

The planning agent’s task of building a three blocks tower
could be modeled by the following program:

proc mkTower(PA)
while ¬HaveTower do

if ∃x, y On(x, y) then
π x, z.[∃y On(x, y)?;move(PA, z, x)]

else
π x, y.move(PA, x, y)

endIf
endWhile

endProc

Here, the agent first tries to stack two blocks and then to
stack a third block on top of these. There is only a limited
amount of nondeterminism in this task specification, i.e. the
choice of which block to move. We can devise a conditional

478

plan to perform this task against the interfering agent IA
with a set bound on the number of interfering moves.

We could also use a generic planning procedure to spec-
ify the planning agent’s behavior, leaving all choices to the
planning mechanism:

proc genericP lanner(agt, n,m)
(n ≤ m)?;
([actionSequence(agt, 0, n);Goal?] |
genericP lanner(agt, n+ 1,m))

endProc

proc actionSequence(agt, n,m)
(n = m)? |
[(n 6= m)?;πa.[primitiveAction(a)?; a];
if LastActionNotBy(agt)
then genericP lanner(agt, 0,m− n− 1)
else actionSequence(agt, n+ 1,m) endIf]

endProc

The Goal predicate must be defined by the user, in the case

of our example Goal
def
= HaveTower. This genericP lanner(

agt, n,m) procedure performs iterative deepening search for
a conditional plan that achieves Goal. The procedure uses a
bound n on the depth of the conditional plan. The procedure
is first called with n = 0, and if it fails with this bound,
the bound is increased by 1 and the search is run again,
until a plan is found or the bound n exceeds the absolute
depth limit m. When an exogenous action happens, it is
assumed that a branch occurs in the plan at that point and
the genericP lanner procedure is called recursively to find a
subplan whose depth does not exceed the remaining credit.
The procedure minimizes the depth of the plan generated,
not the total number of actions it contains.

As a second example, consider a blocks world where the
action of moving a block onto another may fail and the
moved block may end up on the table. We can model this in
a somewhat similar way to the previous example. We can re-
place the move(agt, x, y) action by an initial moveAttempt(
agt, x, y) action and two outcome determining actions per-
formed by a nature agent NA, moveSucceeds(NA, agt, x, y)
and moveFails(NA,PA, x, y). The nature agent’s behavior
can be specified as follows:

proc natureBehavior(NA,n)
π x, y.[(n > 0 ∧MoveAttempted(PA, x, y))?;
moveFails(NA,PA, x, y);
natureBehavior(NA,n− 1)] |

π x, y.[MoveAttempted(PA, x, y)?;
moveSucceeds(NA,PA, x, y);
natureBehavior(NA,n)]

endProc

Here as well, we use a parameter n to bound the number of
failures so that the goal is achievable.

Our third example involves sensing. Imagine that blocks
may be wet and that wet blocks cannot be moved. Suppose
also that the environment includes a humidity sensor agent
HSA that can be queried to find out whether a given block
is wet. We could specify the behavior of HSA as follows:

proc humiditySensorBehavior(HSA)
〈 x : WetnessQueried(PA,HSA, x)→

(reportWet(HSA,PA, x) |
reportNotWet(HSA,PA, x)) 〉

endProc

Here, we assume that there is an action queryWetness(agt,
HSA, x) that an agent can use to query the HSA sensor
agent and two sensor report actions that the sensor can per-
form as a response. We assume that these reports must be
truthful, i.e. that reportWet(HSA, agt, x) has as precondi-
tion Wet(x) and similarly for the “not wet” case. When the
planning agent observes the sensor report, it gets to know
whether the block was wet by inferring that the report’s
precondition must have been true.

Note that the planning agent could also acquire knowledge
by observing an outcome determining action. For example,
if we suppose that move attempts succeed if and only if the
moved block is not wet, and make this a precondition of the
outcome actions, then the planning agent could perform a
move attempt to find out whether a block is wet. In general,
whenever the planning agent observes any environment ac-
tion, it learns that it must have been executable, i.e. learns
that its preconditions held (if it did not know this already).
Any environment action can be “knowledge producing”.

We could also have an additional helpful environment
agent DA that dries wet blocks when requested:

proc dryingAgtBehavior(DA)
〈 x : DryingRequested(PA,DA, x)→ dry(DA, x) 〉

endProc

An environment model/program could involve one or several
such environment agents running concurrently.

3. CONTINGENT PLANNING IN AN APL
As mentioned earlier, we specify our model of contingent

planning for a generic APL. Both the agent’s task and the
behavior of the agents in the environment will be expressed
as nondeterministic concurrent programs in this APL. We
will assume that a structural operational semantics (transi-
tion system) [10] has been specified for this APL. The details
of this semantic specification differ from one APL to another.
But we will abstract over these differences and assume that
the APL semantics defines a transition relation over agent
configurations 〈δ, s〉 that consist of a program δ and a state
s. For instance in 3APL [8], the program is a set of “goals”
running concurrently and the state consists of a belief state
and a ground substitution for variables in the program. In
AgentSpeak(L) [11], the program is a set of “intentions” run-
ning concurrently and the state is a set of events, a belief
base, a set of actions, and a label. In ConGolog, the pro-
gram is a high-level concurrent program and the state is a
ground situation term (together with a fixed situation cal-
culus basic action theory). We assume that the state only
changes as a result of the performance of actions (we con-
sider exogenous events to be actions) and that there is a
function actsPerf(s) = ~a that for every state s, returns the
sequence of actions already performed in that state ~a. We
also use the notation actsPerf(s, s′) to denote the sequence
of actions performed in getting from state s to a later state
s′, i.e. actsPerf(s, s′) = ~a iff actsPerf(s′) = actsPerf(s) ◦ ~a
(note that actsPerf(s, s′) = 〈〉 iff s′ = s). We also assume
that actions themselves are deterministic, although the envi-
ronment can nondeterministically choose between different
actions.

To use planning to find a plan/strategy to perform an
agent task, we also need a specification of when an agent is in
a configuration where its task can be considered successfully
completed. We call such a configuration final and assume

479

that the set of such final configurations has been specified.
For instance, CanPlan [14] uses the intention nil for this,
while ConGolog defines a Final predicate.

Another issue arises in connection with incomplete knowl-
edge. When performing its own program/task, the agent
should only advance from the current configuration to a
new one when it knows that there is a legal transition be-
tween them. For instance, when executing the program in-
volves performing a primitive action, the agent should know
that the action is executable in the current state, and when
the program involves testing a condition, it should know
whether this condition holds in the current state. Typically,
the semantics would require that the action’s executability
(resp. the tested condition or its negation) be entailed by
the agent’s belief base for the transition to exist. These epis-
temic preconditions are appropriate for executing the agent’s
program, but they are not right when one is considering pos-
sible executions of the environment program in a contingent
planning context. The plan we produce should specify a
suitable agent action in response to any environment action
that the agent considers possible, i.e. that is consistent with
what the agent knows. For example, if the environment pro-
gram is if φ then a1 else a2 endIf and the agent does not
know whether the condition φ holds (i.e. both φ and ¬φ are
consistent with its beliefs), then its plan should prescribe
a suitable response to both environment actions a1 (when
φ holds) and a2 (when ¬φ holds). Existing APL semantics
may need to be extended to specify this kind of “consistent”
transition relation for environment programs.

Thus in our abstract account, we will rely on the following
primitives:

• EnvTrans(〈ρ, s〉, 〈ρ′, s′〉): the agent considers it possi-
ble that the environment program ρ in state s can make
a transition to state s′ with the program ρ′ remaining;

• AgtTrans(〈δ, s〉, 〈δ′, s′〉): the agent knows that the agent
program δ in state s can make a transition to state s′

with the program δ′ remaining;

• AgtFinal(〈δ, s〉): the agent knows that the agent pro-
gram δ can legally terminate in state s.

Let us also define a few auxiliary notions in terms of these
primitives:

EnvTrans(〈ρ, s〉) def
=

{〈ρ′, s′〉)|EnvTrans(〈ρ, s〉, 〈ρ′, s′〉)},

EnvBlocked(〈ρ, s〉) def
= EnvTrans(〈ρ, s〉) = ∅,

FiniteEnvTrans(〈ρ, s〉) def
= EnvTrans(〈ρ, s〉) is a finite set.

Moreover, let EnvTrans∗(〈ρ, s〉, 〈ρ′, s′〉) be the reflexive tran-
sitive closure of EnvTrans, i.e. EnvTrans∗(〈ρ, s〉, 〈ρ′, s′〉)
holds iff 〈ρ′, s′〉 is reachable from 〈ρ, s〉 in 0 or more transi-
tions. Also let EnvTrans∗(〈ρ, s〉) and FiniteEnvTrans∗(〈ρ, s〉)
be defined for EnvTrans∗ as were EnvTrans(〈ρ, s〉) and
FiniteEnvTrans(〈ρ, s〉) for EnvTrans. Finally, let

EnvTransm(〈ρ, s〉, 〈ρ′, s′〉) def
=

EnvTrans∗(〈ρ, s〉, 〈ρ′, s′〉) and EnvBlocked(〈ρ′, s′〉),

i.e. 〈ρ′, s′〉 can be reached by executing 〈ρ, s〉 until it blocks.
Also, let EnvTransm(〈ρ, s〉) be defined as was EnvTrans(〈ρ, s〉)
for EnvTrans.

Let us now define what an execution of an agent program
in a dynamic environment is. We model the environment’s
possible behaviors by a nondeterministic program ρ. So for
us, a configuration will be a triple 〈δ, ρ, s〉 formed by a pro-
gram for the agent δ, a program for the environment ρ, and
a state s. We assume that ρ executes with higher priority
than the planning agent’s program δ. This seems reasonable
in a contingency planning context, since the agent cannot
control when the environment acts and we want planning
to produce a plan that works for any possible behavior by
the environment (different assumptions may be reasonable
in other contexts). Both the agent program and environ-
ment program may be nondeterministic. We also assume
that environment/exogenous actions are fully observable.
Since the environment program ρ runs at higher priority,
it should eventually block so that the agent can act. We
don’t require ρ to ever terminate. We say that a config-
uration 〈δ, ρ, s〉 may evolve to a configuration 〈δ′, ρ′, s′〉 if
and only if either EnvTrans(〈ρ, s〉, 〈ρ′, s′〉) holds and δ′ = δ,
or both EnvBlocked(〈ρ, s〉) and AgtTrans(〈δ, s〉, 〈δ′, s′〉) hold
and ρ′ = ρ. We also say that a configuration 〈δ, ρ, s〉 is final
whenever EnvBlocked(〈ρ, s〉) and AgtFinal(〈δ, s〉).

Given this, we can now define various kinds of executions.
An execution of an agent program δ in an environment ρ
starting from a state s is a possibly infinite sequence of con-
figurations 〈δ0 = δ, ρ0 = ρ, s0 = s〉, 〈δ1, ρ1, s1〉, . . . such
that for all pairs of successive configurations, 〈δi, ρi, s〉 may
evolve to its successor 〈δi+1, ρi+1, si+1〉. A finite execution
is complete if and only if its last configuration is either final
or there is no configuration that it may evolve to. In the for-
mer case, we say that the execution successfully terminates;
in the latter case, we say that the execution is stuck or has
reached a dead-end. We also say that a complete execution
ends in state sn if sn is the state of its last configuration.

Let us now discuss a few issues related to environment
modeling. Sometimes, we want to model cases where the en-
vironment may do an action or do nothing. Since we assume
that the environment program is running at higher priority,
the “do nothing” case must be represented by an explicit “no
op” transition. For example, a case where the environment
may either do action a or do nothing and then waits until
P becomes true before continuing must be modeled as:

(a|noOp);P?)); . . .

where noOp is a primitive action that has no effects on any
fluent. If we left out the noOp

”
i.e.

(a;P?); . . .

then the only possible execution would be for the environ-
ment to do a, since it runs at higher priority and the agent
cannot do a transition when the environment can.

A good environment program/model should also be such
that in any configuration, one knows what the environment
may do next. That is, after having observed a particular se-
quence of actions, there should be only one possible remain-
ing environment program. For example, the environment
program

((a;P?; b)|(a;P?; c))

is a bad model because after observing a, the remaining
environment program may be either (P?; b) or (P?; c), i.e.
either the environment may only do b or it may only do c

480

and the planner has no way of knowing which. The program

a;P?; (b|c)

does not have this problem. To rule this out, we impose the
following constraint:

for any configuration 〈δ, ρ, s〉 in an execution that
started in the initial configuration 〈δi, ρi, si〉, it
must be the case that if EnvTrans(〈ρ, s〉, 〈ρ′, s′〉),
EnvTrans(〈ρ, s〉, 〈ρ′′, s′′〉), and actsPerf(s′′) =
actsPerf(s′), then ρ′ = ρ′′.

Another case of a problematic environment model is the
program P?; a when both P and ¬P are consistent with
the agent’s beliefs. Here it is consistent that the environ-
ment does a when P holds and it is also consistent that it
does nothing when ¬P holds. In the latter case, the model
should make it explicit that the environment chooses the
second option by making a transition. So we should use the
environment program

if P then a else noOp endIf

instead of the one above. To rule out this kind of problematic
environment model, we impose the following constraint:

for any configuration 〈δ, ρ, s〉 in an execution that
started in the initial configuration 〈δi, ρi, si〉, it
must be the case that if there exist ρ′, s′ such that
EnvTrans(〈ρ, s〉, 〈ρ′, s′〉), then EnvNotBlocked(〈ρ,
s〉), where EnvNotBlocked(〈ρ, s〉) is a new seman-
tic primitive meaning that the agent knows in
state s that the environment program ρ is not
blocked.

These constraints limit the use of tests, whose execution is
unobservable, in environment programs.

4. FORMALIZATION
Informally, an agent is able/knows how to execute a pro-

gram δ in a state s where the environment behaves as speci-
fied by the program ρ if the agent is able to repeatedly choose
some action that is known to be executable and allowed by
her program, such that no matter what exogenous actions
occur (as allowed by the environment program ρ), she can
continue this process with what remains of her program and
eventually reach a configuration where she knows that she
can legally terminate.

We can formalize Able(δ, ρ, s), i.e., that the agent is able
to execute the program δ in an environment that behaves
as specified by the program ρ in state s as follows. Let
Able(δ, ρ, s) be the smallest relation R(δ, ρ, s) such that:

(A) for all triples (δ, ρ, s), if
EnvBlocked(〈ρ, s〉) and AgtFinal(〈δ, s〉),

then R(δ, ρ, s);

(B) for all triples (δ, ρ, s), if
EnvBlocked(〈ρ, s〉) and

there exist δ′, s′ such that
AgtTrans(〈δ, s〉, 〈δ′, s′〉) and R(δ′, ρ, s′),

then R(δ, ρ, s);

(C) for all triples (δ, ρ, s), if
it is not the case that EnvBlocked(〈ρ, s〉) and

for all ρ′, s′,
EnvTrans(〈ρ, s〉, 〈ρ′, s′〉) implies R(δ, ρ′, s′),

then R(δ, ρ, s).

Nothing in the above ensures that there exists a finitely
branching conditional plan for the agent in case (C). We can
strengthen the definition to get this by replacing (C) with
the following:

(C’) for all triples (δ, ρ, s), if
it is not the case that EnvBlocked(〈ρ, s〉) and

FiniteEnvTrans∗(〈ρ, s〉) and
for all ρ′, s′,
EnvTransm(〈ρ, s〉, 〈ρ′, s′〉) implies R(δ, ρ′, s′),

then R(δ, ρ, s),

Let’s call this stronger definition Able+

If Able+(δ, ρ, s) holds, it is straightforward to generate a
conditional plan that the agent can follow to successfully ex-
ecute its program no matter how the environment behaves,
given that the agent can always choose an action that leads
to successful termination and that environment actions are
fully observable. We write AbleBy(σ, δ, ρ, s) to mean that the
agent is able to execute program δ in an environment that
behaves as specified by program ρ in state s by executing
the conditional program σ. Formally, let AbleBy(σ, δ, ρ, s)
be the smallest relation R(σ, δ, ρ, s) such that:

(A) for all triples (δ, ρ, s), if
EnvBlocked(〈ρ, s〉) and AgtFinal(〈δ, s〉),

then R(nil, δ, ρ, s);

(B) for all quadruples (σ, δ, ρ, s), if
EnvBlocked(〈ρ, s〉) and
there exist δ′, s′ such that

AgtTrans(〈δ, s〉, 〈δ′, s′〉) and R(σ, δ′, ρ, s′) and
actsPerf(s, s′) = 〈〉,

then R(σ, δ, ρ, s);

(C) for all a, σ, δ, ρ, s, if
EnvBlocked(〈ρ, s〉) and
there exist δ′, s′ such that

AgtTrans(〈δ, s〉, 〈δ′, s′〉) and R(σ, δ′, ρ, s′) and
actsPerf(s, s′) = a,

then R((a;σ), δ, ρ, s);

(D) for all triples (δ, ρ, s), if
it is not the case that EnvBlocked(〈ρ, s〉) and

FiniteEnvTrans∗(〈ρ, s〉) and
for all ρ′, s′

EnvTransm(〈ρ, s〉, 〈ρ′, s′〉) implies
for some σ′, R(σ′, δ, ρ′, s′),

then R(σ, δ, ρ, s) where
σ = if Done(actsPerf(s, s1)) then σ1 else

. . .
if Done(actsPerf(s, sn)) then σn else nil

and EnvTransm(〈ρ, s〉) = {〈ρ1, s1〉, . . . , 〈ρn, sn〉}
and R(σi, δ, ρi, si) for i = 1, . . . , n.

Note that in the above, we assume that the programming
language allows testing whether a given sequence of actions
~a has just been done using the condition Done(~a).

5. PROPERTIES
We can prove that whenever the agent is able to execute

a program δ in an environment behaving as ρ in state s, i.e.
Able+(δ, ρ, s) holds, then there exist a conditional program
σ such that the agent is able to execute the program δ in
an environment behaving as ρ in state s by executing σ, i.e.
AbleBy(σ, δ, ρ, s) also holds:

481

Theorem 1. If Able+(δ, ρ, s), then there exists σ such
that AbleBy(σ, δ, ρ, s).

We can also prove the following:

Theorem 2. If AbleBy(σ, δ, ρ, s), then Able+(δ, ρ, s).

It is well known that there are goals that are achievable,
but cannot be achieved by any conditional program, for in-
stance, goals that require unbounded iteration. Similarly,
there are programs that an agent is able to execute, but
where there is no conditional plan that can be followed to
execute the program. So the definitions of ability proposed
here only tell whether the program can be executed by fol-
lowing a conditional plan. This issue is discussed in [12,
6, 13], and the authors give definitions of ability that allow
arbitrary deterministic plans (including iterative ones) as
potential solutions, in the context of a static environment.
We believe that these definitions can be adapted to handle
contingent planning/dynamic environments. But we leave
this for future work, as we want to focus on the conditional
planning case here.

We can also show that if the agent is able to execute pro-
gram δ in an environment behaving as ρ in state s by execut-
ing the conditional program σ, i.e. AbleBy(σ, δ, ρ, s), then
σ is guaranteed to successfully terminate in a state where δ
can also terminate no matter how the environment acts:

Theorem 3. If AbleBy(σ, δ, ρ, s), then

1. every execution of σ in environment ρ starting in state
s successfully terminates, and

2. for every complete execution of σ in environment ρ
starting in state s, if this execution ends in state s′,
then there exists an execution of δ in environment ρ
starting in state s that successfully terminates in s′.

6. CONCRETE SPECIFICATION IN CON-
GOLOG

We can ground the abstract account of contingent plan-
ning developed earlier by defining the primitives that it uses
in terms of an existing APL semantics. In this section, we
do this for ConGolog.

ConGolog’s semantics is a structural operational seman-
tics (with a single-step transition relation) in the style of
[10]. This semantics introduces two special predicates Trans
and Final: Trans(δ, s, δ, s′) means that by executing pro-
gram δ in situation s, one can get to situation s′ in one
elementary step with the program δ remaining to be exe-
cuted; Final(δ, s) means that program δ may successfully
terminate in situation s. For example, the transition re-
quirements for sequence are

Trans([δ1; δ2], s, δ′, s′) ≡
Final(δ1, s) ∧ Trans(δ2, s, δ′, s′) ∨
∃δ′′. T rans(δ1, s, δ′′, s′) ∧ δ′ = (δ′′; δ2)

i.e., to single-step the program (δ1; δ2), either δ1 terminates
and we single-step δ2, or we single-step δ1 leaving some δ′′,
and (δ′′; δ2) is what is left of the sequence. We denote the
set of ConGolog semantic axioms by C.

As mentioned in Section 2, when the planning agent ob-
serves an environment action, it may acquire additional knowl-
edge. At a minimum, it learns that the environment action

must have been executable, i.e. that its preconditions must
have been true (assuming the agent did not know this al-
ready). Let us represent the new information acquired by
the planning agent in a situation s by NewInfo(s). For now,
let’s assume that the only new information acquired by the
planning agent as it observes environment actions is that
they were executable. Then we can use the definition:1

NewInfo(s)
def
= executable(s), where

executable(s)
def
= ∀a, s.S0 < do(a, s) ≤ s ⊃ Poss(a, s).

In the remainder, we will handle the knowledge producing
effects of observing the actions in the situation s by adding
NewInfo(s) to the agent’s basic action theory D.

First, we define EnvTrans(〈ρ, s〉, 〈ρ, s′〉), i.e. that the agent
considers it possible that the program δ in situation s can
make a transition to situation s′ with the program δ′ re-
maining, as follows:

EnvTrans(〈ρ, s〉, 〈ρ, s′〉) def
=

D ∪ C ∪ {NewInfo(do(actsPerf(s), S0))} ∪
{Trans(ρ, do(actsPerf(s), S0), ρ′, do(actsPerf(s′), S0))}
is consistent.

Note that we map the state s into the situation term
do(actsPerf(s), S0), which stands for the situation where the
actions performed in state s have occurred. We also add
NewInfo(do(actsPerf(s), S0)), i.e. executable(do(actsPerf(s),
S0)), to the theory (the agent’s knowledge) at every step.
This captures the knowledge expansion that may take place
when the agent observes the occurrence of exogenous ac-
tions.

Secondly, we define AgtTrans(〈δ, s〉, 〈δ′, s′〉), i.e. that the
agent knows that the program δ in state s can make a tran-
sition to state s′ with the program δ′ remaining as follows:

AgtTrans(〈δ, s〉, 〈δ′, s′〉) def
=

D ∪ C ∪ {NewInfo(do(actsPerf(s), S0))} |=
Trans(δ, do(actsPerf(s), S0), δ′, do(actsPerf(s′), S0)).

Thirdly, we define AgtFinal(〈δ, s〉), i.e. that the agent
knows that the program δ can legally terminate in state s
as follows:

AgtFinal(〈δ, s〉) def
=

D ∪ C ∪ {NewInfo(do(actsPerf(s), S0))} |=
Final(δ, do(actsPerf(s), S0)).

Finally, we define EnvNotBlocked(〈ρ, s〉), i.e. that the
agent knows that the environment program ρ is not blocked
in state s as follows:

EnvNotBlocked(〈ρ, s〉) def
=

D ∪ C ∪ {NewInfo(do(actsPerf(s), S0))} |=
∃ρ′, s′ Trans(ρ, do(actsPerf(s), S0), ρ′, s′).

Note that we assume that the action theory D includes a
domain closure axiom for primitive actions. Thus if D∪C |=
∃δ′, s′ Trans(δ, s, δ′, s′), then there exist ground terms δ′, s′

such that D ∪ C |= Trans(δ, s, δ′, s′). For instance, this

1We can assume that the agent knows that the situation
where the program started was executable and that any ac-
tion it performed in getting to s was also executable; so
the only part of NewInfo(s) that is really new is that the
exogenous actions were possible.

482

is necessary to rule out having both EnvBlocked(ρ, s) and
D ∪ C |= ∃ρ′, s′ Trans(ρ, do(actsPerf(s), S0), ρ′, s′).

In the above, we assumed that the only new information
acquired by the agent was that the observed environment
actions were executable. This may be overly restrictive, as
we also assume that the planner knows what program the
environment is executing. This environment program may
specify that some actions can only occur under some condi-
tions. For example, we may have if P then a else b endIf
as environment program. Suppose that the planning agent
does not know whether P holds initially. Upon observing the
action a, the planning agent learns that P must have been
true, since it knows that the environment only performs a
when P holds. We can handle this by redefining NewInfo as
follows:

NewInfo(δi, ρi, si, δ, ρ, s)
def
=

executable(si) ∧ Trans∗((ρi 〉〉 δi), si, (ρ 〉〉 δ), s)

The “new information” now depends on several additional
parameters: the initial agent program δi, initial environ-
ment program ρi, situation where their execution started
si, current agent program δ, and current environment pro-
gram ρ. The new definition says that the planning agent
learns that there must have been a partial execution of the
environment program together with the agent program from
si to the current situation s, with all that this implies (for
instance, that P must have been true in the above example).
Note that the new definition implies the old one. The new
parameters in NewInfo must be added to all our primitives,
for instance, EnvTrans(〈δi, ρi, si〉, 〈δ, ρ, s〉, 〈ρ′, s′〉), meaning
that the agent considers it possible that the environment
program ρ in state s can make a transition to program ρ′ and
state s′ after observing transitions from the initial configu-
ration 〈δi, ρi, si〉 to the current configuration 〈δ, ρ, s〉, and
similarly for the other primitives. The grounding for these
can be exactly as before, but using the revised definition
of NewInfo. For our notions of ability, we now write for
instance AbleBy(σ, δi, ρi, si, δ, ρ, s) to mean that the agent
is able to execute the program δ in an environment that
behaves as specified by the program ρ in state s by execut-
ing the conditional program σ after reaching configuration
〈δ, ρ, s〉 from the initial configuration 〈ρi, δi, si〉 (and simi-
larly for Able(δi, ρi, si, δ, ρ, s)). The definitions for these can
be exactly as before, but using the revised versions of the
primitives with the stronger knowledge expansion. Finally,

we can define: AbleBy(σ, δ, ρ, s)
def
= AbleBy(σ, δ, ρ, s, δ, ρ, s).

7. AN IMPLEMENTATION
We show in this section that it is easy to extract from the

above definition a Prolog program that given a program p for
the agent, a program e for the environment, and a starting
state s, deliberates and returns a conditional plan c that
allows the agent to execute its program in the environment,
i.e., such that AbleBy(c, p, e, s) holds.

% Case(A)
ableBy([],P,E,S) :-

envBlocked(E,S), agtFinal(P,S).
% Case(B)
ableBy(C,P,E,S) :-

envBlocked(E,S), agtTrans(P,S,P1,S1),
actsPerf(S,S1,[]), ableBy(C,P1,E,S).

% Case(C)
ableBy([A|C],P,E,S) :-

envBlocked(E,S), agtTrans(P,S,P1,S1),
actsPerf(S,S1,[A]), ableBy(C,P1,E,S1).

% Case(D)
ableBy(C,P,E,S) :-

findall([E1,S1], envTransP(E,S,E1,S1), L),
ableByBranch(C,P,S,L).

ableByBranch(?(fail),P,S,[]).
ableByBranch(if(done(As),C1,C2),P,S,[[E1,S1]|L]):-

actsPerf(S,S1,As), ableBy(C1,P,E1,S1),
ableByBranch(C2,P,S,L).

envBlocked(E,S) :-
not envTransExists(E,S).

envTransExists(E,S) :-
envTrans(E,S,E1,S1).

envTransP(E,S,E1,S1) :-
envTransRTC(E,S,E1,S1), envBlocked(E1,S1).

% Reflexive Transitive closure of envTrans
envTransRTC(E,S,E,S).
envTransRTC(E,S,E2,S2) :-

envTrans(E,S,E1,S1), envTransRTC(E1,S1,E2,S2).

This program relies on the availability of the predicates
agtTrans, agtFinal, envTrans, and actsPerf. The latter
simply extract the actions As that where performed in mov-
ing from state S to S1. agtTrans and agtFinal represent
AgtTrans and AgtFinal respectively, while envTrans repre-
sents EnvTrans.

Theorem 4. It agtTrans and agtFinal are a sound im-
plementation of AgtTrans and AgtFinal, and envTrans is
a complete implementation of EnvTrans, then ableBy is
a sound implementation of AbleBy, i.e., for all (c,p,e,s)
such that ableBy(c,p,e,s) succeeds, AbleBy(c,p,e,s) holds.

We have developed a Prolog implementation of agtTrans,
agtFinal and envTrans in the context of the situation cal-
culus and ConGolog. This implementation is based on a
recent version of IndiGolog that supports a limited form of
incomplete knowledge [16]. Specifically, incomplete knowl-
edge is restricted to having a set of possible values for each
functional fluent, and formulas can be possibly true or cer-
tainly true (i.e. known to be true). Informally, a formula φ
is possibly true if there exists a choice of possible values for
the fluents in the formula that makes it true. A formula φ is
certainly true, if ¬φ is not possibly true, i.e. if every choice
of possible values for the fluents in φ makes φ true.

Now, using the the notion of a formula being certainly
true we can devise a sound (though possibly not complete)
definition of agtTrans and agtFinal, while using the notion
of a formula being possibly true, we can devise a complete
(though possibly not sound) definition of envTrans.

In our implementation, we handle the knowledge produc-
ing effects of observing environment actions, more specifi-
cally learning that these actions’ preconditions were true,
by adapting the regression mechanism of [16] (which only
deals with sensing actions performed by the agent). One
provides specifications of preconditions for environment ac-
tions of the form poss_set(a, f, v, w) and poss_rej(a,

f, v, w), meaning that the occurrence of the exogenous ac-
tion a is possible if and only if the fluent f has (resp. does
not have) the value v when condition w holds. The regression
mechanism uses these to update the set of possible values of
fluents. We do not yet handle new information that comes
from knowing the environment program.

483

8. CONCLUSION
Most agents operate in dynamic and incompletely known

environments, and they should anticipate relevant contin-
gencies in making plans of action. In this paper, we devel-
oped a formal model of contingent planning for use in agent
programming languages. We showed how agent tasks and
environment agent behaviors can be specified in an APL
with a transition semantics and how this can be viewed as
a specification of a contingent planning problem. Then we
developed a formalization of when a conditional plan is a
solution to such a contingent planning problem. We proved
that our formalization had some desirable properties. Then,
we showed how the abstract APL semantic model that we
used in formalizing contingent planning problems and their
solutions could be concretely specified for ConGolog and the
situation calculus. This confirms the soundness of the model
and provides one path to implementation. We then dis-
cussed the main elements of an implementation in Prolog,
relying on IndiGolog’s support for modeling some forms of
incomplete knowledge and how it evolves [16].

We should point out that our framework only involved
contingent planning, where other agents are modeled as non-
deterministic processes rather than as rational decision mak-
ers. This limits the applicability of our approach, but makes
it more readily implementable. Developing a game-theoretic
planning model for agent programming would certainly be
a worthy objective (see [7] for one approach to this). Rep-
resenting and reasoning efficiently about the (incomplete)
knowledge that multiple agents have about the world and
each other remains a key problem for multiagent planning.

Many other avenues remain for future work. It would be
worthwhile to examine whether our form of contingent plan-
ning with procedural specifications for the agent’s task and
the behavior of environment agents can be compiled into the
kind of contingent planning problems that operator-based
contingent planners can solve, and if so to develop a compi-
lation mechanism, as done in [1] for planning with sensing.
Our approach to representing dynamic incompletely known
environments should be tested on some realistic applica-
tions, to see whether it is sufficiently expressive and easy
to use. Perhaps some language enhancements can be help-
ful for this. We would also like to do more experimentation
with our implementation. Finally, it would be interesting to
generalize our formalization to support iterative plans.

9. REFERENCES
[1] J. Baier and S. McIlraith. On planning with programs

that sense. In Proceedings of the 10th International
Conference on Principles of Knowledge Representation
and Reasoning (KR06), pages 492–502, Lake District,
UK, June 2006.

[2] J. A. Baier, C. Fritz, and S. A. McIlraith. Exploiting
procedural domain control knowledge in
state-of-the-art planners. In Proceedings of the
Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS 2007), Providence,
Rhode Island, USA, September 22 - 26 2007.

[3] A. Bouguerra and L. Karlsson. PC-SHOP: A
probabilistic-conditional hierarchical task planner.
Intelligenza Artificiale, 2(4):44–50, 2005.

[4] G. De Giacomo, Y. Lespérance, and H. J. Levesque.
ConGolog, a concurrent programming language based

on the situation calculus. Artificial Intelligence,
121:109–169, 2000.

[5] G. De Giacomo and H. J. Levesque. An incremental
interpreter for high-level programs with sensing. In
H. J. Levesque and F. Pirri, editors, Logical
Foundations for Cognitive Agents, pages 86–102.
Springer-Verlag, 1999.

[6] G. De Giacomo, S. Sardiña, Y. Lespérance, and H. J.
Levesque. On deliberation under incomplete
information and the inadequacy of entailment and
consistency-based formalizations. In Working Notes of
the 1st Int. Workshop on Programming Multiagent
Systems (PROMAS-2003), Melbourne, July 2003.

[7] A. Farinelli, A. Finzi, and T. Lukasiewicz. Team
programming in Golog under partial observability. In
M. M. Veloso, editor, IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007,
pages 2097–2102, 2007.

[8] K. V. Hindriks, F. S. de Boer, W. van der Hoek, and
J. J. C. Meyer. Agent programming in 3APL.
Autonomous Agents and Multi-Agent Systems,
2:357–401, 1999.

[9] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and
R. B. Scherl. GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming,
31(59–84), 1997.

[10] G. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI-FN-19, Computer
Science Dept., Aarhus University, Denmark, 1981.

[11] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In W. V. Velde and
J. W. Perram, editors, Agents Breaking Away (LNAI),
volume 1038, pages 42–55. Springer-Verlag, 1996.

[12] S. Sardiña, G. De Giacomo, Y. Lespérance, and
H. Levesque. On the semantics of deliberation in
IndiGolog – from theory to implementation. Annals of
Mathematics and Artificial Intelligence,
41(2–4):259–299.

[13] S. Sardiña, G. De Giacomo, Y. Lespérance, and H. J.
Levesque. On the limits of planning over belief states
under strict uncertainty. In P. Doherty, J. Mylopoulos,
and C. A. Welty, editors, Principles of Knowledge
Representation and Reasoning, Proc. of the 10th Int.
Conf. (KR2006), pages 463–471, Windemere, UK,
June 2006. AAAI Press.

[14] S. Sardiña, L. de Silva, and L. Padgham. Hierarchical
planning in BDI agent programming languages: A
formal approach. In Proc. of the 5th Int. Joint Conf.
on Autonomous Agents and Multiagent Systems
(AAMAS’06), pages 1001–1008, Hakodate, Japan,
May 2006. ACM Press.

[15] S. Sardiña and L. Padgham. Goals in the context of
BDI plan failure and planning. In Proc. of the 6th Int.
Joint Conf. on Autonomous Agents and Multiagent
Systems (AAMAS’07), pages 16–24, Honolulu, HI,
May 2007. Research Publishing Services.

[16] S. Sardiña and S. Vassos. The Wumpus World in
IndiGolog: A preliminary report. In Working Notes of
the 6th Workshop on Nonmonotonic Reasoning,
Action, and Change (at IJCAI-05), Edinburgh, 2005.

484

