
Adaptive Kanerva-based Function Approximation for
Multi-Agent Systems

(Short Paper)

Cheng Wu and Waleed M. Meleis

ABSTRACT
In this paper, we show how adaptive prototype optimiza-
tion can be used to improve the performance of function ap-
proximation based on Kanerva Coding when solving large-
scale instances of classic multi-agent problems. We apply
our techniques to the predator-prey pursuit problem. We
first demonstrate that Kanerva Coding applied within a re-
inforcement learner does not give good results. We then de-
scribe our new adaptive Kanerva-based function approxima-
tion algorithm, based on prototype deletion and generation.
We show that probabilistic prototype deletion with random
prototype generation increases the fraction of test instances
that are solved from 45% to 90%, and that prototype split-
ting increases that fraction to 94%. We also show that op-
timizing prototypes reduces the number of prototypes, and
therefore the number of features, needed to achieve a 90%
solution rate by up to 87%. These results demonstrate that
our approach can dramatically improve the quality of the
results obtained and reduce the number of prototypes re-
quired. We conclude that adaptive prototype optimization
can greatly improve a Kanerva-based reinforcement learner’s
ability to solve large-scale multi-agent problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Experimentation

Keywords
Function approximation, Kanerva coding, Reinforcement learn-
ing, pursuit

1. INTRODUCTION AND RELATED WORK
Multi-agent problems can be difficult to solve by tradi-

tional machine learning techniques because the state space
can be very large. The predator-prey pursuit problem [4] is
a classic example of such a multi-agent problem. A general
version of the problem takes place on a rectangular grid with

Cite as: Adaptive Kanerva-based Function Approximation for Multi-
Agent Systems (Short Paper), Cheng Wu, Waleed M. Meleis,Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-
16., 2008, Estoril, Portugal, pp.1357-1360..
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

one or more predator agents and one or more prey agents.
Each grid cell is either open or closed, and an agent can only
occupy open cells. Each agent has an initial position.

The problem is played in a sequence of time periods. In
each time period, each agent can move to a neighboring open
cell one horizontal or vertical step from its current location,
or it can remain in its current cell. All moves are assumed
to occur simultaneously, and more than one predator agent
may not occupy the same cell at the same time. Each agent
can observe the location of all other agents, and predator
agents and prey agents can each communicate with agents
of the same type. If a predator agent is in the same cell as a
prey agent at the end of a time period, then that target has
been caught. The goal is for the predator agents to catch
all the prey agents in the shortest time.

Pursuit problems are difficult to solve in general. Closed-
form solutions to restricted versions of the problem have
been found [1, 7], but most such problems remain open.
Researchers have used approaches such as genetic algorithms
[5] and reinforcement learning [12] to develop solutions.

Reinforcement learning [11] is, in some respects, well-
suited to solving multi-agent problems, and Q-learning [13]
has emerged as one of the most successful reinforcement
learning strategies. The algorithm works by combining state
space exploration and exploitation to learn the value of each
state-action pair. Through repeated trials, the estimates of
the values of each state-action pair can gradually converge
to the true value, and these can be used to guide the agent
to maximize its reward. Under certain limited conditions,
Q-learning has been shown to converge to an optimal policy.

A key limitation on the effectiveness of Q-learning is the
size of the table needed to store the state-action values.
The requirement that an estimated value be stored for ev-
ery state-action pair limits the size and complexity of the
learning problems that can be solved. Instead, function ap-
proximation [3] can be used to store an approximation of
this table. Many approximation techniques exist, including
coarse coding [6], and tile coding [2], and there are guaran-
tees on their effectiveness in some cases [11].

Sparse distributed memories [8] can also be used to reduce
the amount of memory needed to store the state-action value
table. This approach applied to reinforcement learning, also
called Kanerva Coding [11], represents a function approxi-
mation technique that is particularly well-suited to problem
domains with high dimensionality. A collection of k pro-
totype state-action pairs, (prototypes) is selected, each of
which again corresponds to a binary feature. A state-action
pair and a prototype are said to be adjacent if their bit-wise



representations differ by no more than 1 bit. A state-action
pair is represented as a collection of binary features, each
of which equals 1 if and only if the corresponding prototype
is adjacent. A value θ(i) is maintained for the ith feature,
and an approximation of the value of a state-action pair is
then the sum of the θ values of the adjacent prototypes. In
this way, Kanerva Coding can greatly reduce the size of the
value table that needs to be stored.

If the number of prototypes is very large relative to the
number of state-action pairs, and the prototypes are uni-
formly distributed through the state space, each prototype
will be adjacent to a small number of state-action pairs. In
this case, the approximate state-action values will tend to
be close to the true values, and the reinforcement learner
will operate as usual. However if the number of prototypes
is small, or if the prototypes themselves are not well chosen,
the approximate values will not be similar to the true values
and the reinforcement learner will give poor results.

Adaptively choosing prototypes appropriate to the par-
ticular application is an important way to contribute prior
knowledge and experience to the reinforcement learner. There
is therefore a need for algorithms to select prototypes that
can span the state-space for a particular application. There
have been few published attempts to apply Kanerva coding
to multi-agent problems [9] or to evaluate and improve the
quality of sets of prototypes.

Ratitch [10] has shown that sparse distributed memories
can be used to represent the value table in a reinforcement
learner. However, they add and delete locations only when
the number of locations activated by an individual sample
is below a fixed threshold. This approach may overreact
to individual samples, in contrast to our approach which
considers all samples and all prototypes in a training run
before adding and deleting locations. Also, the deterministic
nature of their decision to delete a prototype is less flexible
than our probabilisitic approach.

2. PROTOTYPE OPTIMIZATION
When two different state-action pairs visited during Q-

learning are mapped to the same subset of the prototypes,
a prototype collision is said to have taken place. Both
state-action pairs will necessarily have the same approxi-
mate value, at least one of which may be far from its true
value. Selecting a set of prototypes that minimizes collisions
will maximize the solver’s ability to solve the problem.

However it is difficult to generate an optimal set of pro-
totypes for several reasons: the space of possible subsets
is very large and the state-action pairs encountered by the
solver depend on the specific problem instance being solved.
We therefore investigate several heuristic solutions to the
prototype optimization problem.

We say that a prototype is visited during Q-learning if it
is adjacent to the current state-action pair. If a specific pro-
totype is rarely visited, it implies that few state-action pairs
are adjacent to this prototype. This suggests that this pro-
totype is inappropriate for the particular application. On
the contrary, if a specific prototype is visited frequently, it
implies that too many state-action pairs are adjacent to the
prototype and collisions are more likely to occur. A neces-
sary condition for collisions to be minimized is that most
prototypes are visited an average number of times.

The frequency distribution of visits to prototypes over a
sample run using Q-learning with Kanerva coding is shown

Figure 1: Distribution of the number of visits per
prototype in a sample run.

in Figure 1 both before and after prototype optimization.
This example is an instance of pursuit with a 32x32 grid,
two predator agents, and one prey agent. The non-uniform
distribution of visit frequencies across prototypes before pro-
totype optimization indicates that some prototypes are fre-
quently visited and others are rarely visited.

We can optimize prototypes using visit frequencies. We
divide the original prototypes into three categories: proto-
types with low visit frequency, prototypes with high visit
frequency, and the rest of the prototypes. Prototype opti-
mization attempts to replace those prototypes with low or
high frequency with prototypes that will have average visit
frequencies, as shown in Figure 1.

We describe and evaluate different optimization mecha-
nisms to achieve this goal. In each case, initial prototypes
are selected randomly from the entire space of possible state-
action pairs. Q-learning with Kanerva coding is used to de-
velop policies for the predator agents, while keeping track of
the number of visits to each prototype. After a fixed num-
ber of iterations, we update the prototypes using one of the
mechanisms described below.

2.1 Prototype deletion
Prototypes that are rarely visited do not contribute to the

solution of instances. Similarly, prototypes that are visited
frequently are likely to cause many collisions. It makes sense
to delete these prototypes and replace them with new pro-
totypes with average frequencies. We evaluate the following
two algorithms for deleting prototypes.

In the first approach, we periodically delete a fraction of
prototypes whose visit frequency is lowest, and a fraction of
prototypes whose visit frequency is highest. The fraction of
prototypes that is deleted slowly decreases as the algorithm
runs. The θ value and visit frequency of the new proto-
type is initially set to zero. We refer to this approach as
deterministic prototype deletion.

An advantage of this algorithm is that it is easy to im-
plement and it uses application- and instance-specific in-
formation to guide the deletion of rarely or heavily visited
prototypes. However, this approach deletes prototypes de-
terministically which does not give the solver the flexibility
to keep some prototypes that are rarely or frequently visited.
For example, if the number of prototypes is very large, some
prototypes that might become useful will not be visited in
an early epoch and will be deleted.

In the second approach, we delete prototypes with a prob-
ability equal to an exponential function of the number of vis-



Figure 2: Effect of prototype deletion.

its. I.e. the probability pdel of deleting a prototype whose
visit frequency is v is pdel = λe−λv, where λ is a parameter
that can vary from 0 to 1. In this approach, prototypes that
are rarely visited tend to be deleted with a high probabil-
ity, while prototypes that are frequently visited are rarely
deleted (we describe how we reduce the visit frequency of
heavily visited prototypes in the next section). We refer to
this approach as probabilistic prototype deletion.

2.2 Prototype generation
We replace prototypes that have been deleted with new

prototypes that will tend to improve the behavior of the
function approximation. We evaluate the following two al-
gorithms for generating prototypes.

In the first approach, new prototypes are generated ran-
domly from the entire state space. While this approach ag-
gressively searches the state space for useful prototypes, it
does not use domain- or instance-specific information.

In the second approach, we create new prototypes by ap-
plying prototype splitting. A prototype s1 that has been
visited the most times is selected, and a new prototype s2

that is a neighbor of s1 is created by inverting a fixed number
of bits in s1. The prototype s1 remains unchanged.

This approach creates new prototypes near prototypes
with the highest visit frequencies. These prototypes are sim-
ilar but distinct which tends to reduce the number of visits
to nearby prototypes, and therefore the number of collisions
they cause.

3. EXPERIMENTAL EVALUATION
We evaluate our prototype optimization algorithms by ap-

plying them to random predator-prey pursuit instances on
a 32x32 grid with two non-communicating predator agents
and one prey agent. Each predator agent can see the po-
sition of the prey agent. Each agent can select one of 9
possible actions, moving one step in any of 8 directions, or
not moving. Each grid instance has 32 random closed cells.

In each epoch, we apply each learning algorithm with 1984
prototypes to 40 random training instances followed by 40
random test instances. Prototype optimization is applied
after every 20 epochs. For every 20 epochs, we record the
average fraction of test instances within those epochs that
are solved within a maximum of 64 moves.

The effect of different prototype deletion algorithms is
shown in Figure 2. The figure shows the average fraction
of test instances solved over a series of epochs for three al-

Figure 3: Effect of prototype generation.

gorithms: the pure Kanerva coding algorithm that uses no
prototype optimization, deterministic deletion, and proba-
bilistic deletion algorithms. These deletion algorithms use
random prototype generation.

The algorithms converge after about 200 epochs, and the
results show that the pure Kanerva algorithm solves ap-
proximately 45% of the test instances, the deterministic-
deletion algorithm solves approximately 79% of the test in-
stances, and the probabilistic-deletion algorithm solves ap-
proximately 90% of the test instances. These results indi-
cate that dynamically deleting and regenerating prototypes
can significantly increase the quality of the results. The re-
sults also indicate that probabilistic prototype deletion sig-
nificantly outperforms deterministic deletion.

The effect of different prototype generation algorithms is
shown in Figure 3. The figure shows the average fraction
of test instances solved over a series of epochs for all four
combinations of deletion and generation algorithms.

The algorithms converge after about 240 epochs, and the
results show that prototype splitting raises the fraction of
test instances solved from 79% to 82% with deterministic
prototype deletion, and from 90% to 94% with probabilistic
prototype deletion. These results indicate that prototype
splitting can improve the quality of the results by a small
but noticeable amount.

The effect of varying the parameter λ in the exponential
distribution used to delete prototypes in the probabilistic
deletion algorithm is shown in Table 1. The table shows the
average fraction of test instances solved over a range of λ

values with either random prototype generation or prototype
splitting. The results show that the best results are achieved
when λ = 1 for both prototype generation algorithms.

Figure 4 shows the minimum number of prototypes needed
to solve an average of 90% of test instances over a range of
grid sizes. The results compare the pure Kanerva algorithm
with the probabilistic-split algorithm with λ = 1. The al-

λ 0 0.5 0.8 1

Random

generation
56.25% 77.00% 86.38% 90.40%

Splitting

generation
60.51% 82.63% 94.13% 94.25%

Table 1: The effect of λ under probabilistic deletion



Figure 4: Minimum number of prototypes to solve
an average of 90% of instances, and % reduction.

gorithm is run for 500 epochs and the average solution rate
is measured over the next epoch. The results are computed
by initially setting the number of prototypes equal to the
total number of possible prototypes. After 500 epochs, if
the result is greater than 90%, the number of prototypes is
gradually decreased and the results are recomputed. This
process continues until the solution rate is less than 90%. We
report the minimum number of prototypes needed to solve
an average of 90% of the test instances, which is shown on
a logarithmic scale. Figure 4 also shows the total number of
possible prototypes and the percent reduction in the number
of prototypes needed.

The results show that prototype optimization dramati-
cally reduces the number of prototypes needed to achieve a
90% solution rate. For example, on a 64x64 grid the num-
ber of prototypes needed is reduced from 62, 516 to 8, 064,
a reduction of 87%.

We show an example of the policy learned after 500 epochs
using our adaptive Kanerva-based function approximation
algorithm in Figure 5. This example is an instance of pursuit
with a 32x32 grid, one prey agent which starts on the left,
and two predator agents.

4. CONCLUSIONS
We have shown that pure Kanerva-based function approx-

imation applied within a reinforcement learner does not give
good results. We described our new adaptive Kanerva-based
function approximation algorithm, based on prototype dele-
tion and generation. We showed that probabilistic proto-
type deletion with random prototype generation increases
the fraction of test instances that are solved from 45% to
90%, and that prototype splitting increases that fraction to
94%. We also showed that optimizing prototypes reduces
the number of prototypes, and therefore the number of fea-
tures, needed to achieve a 90% solution rate by up to 87%.

These results demonstrate that our approach can dra-
matically improve the quality of the results obtained and
reduce the number of prototypes required. We conclude
that adaptive prototype optimization can greatly improve a
Kanerva-based reinforcement learner’s ability to solve large-
scale multi-agent problems.

5. REFERENCES
[1] M. Adler, H. Racke, N. Sivadasan, C. Sohler, and

1

2

3

4

5

6

7

8

9

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

10

14

13

12

11

0

1 2 3 4 5 6 7 8 9 313029282726252423222120191817161510 141312110

11

1

2


3


4


5


6


7


8

9


12

13 1
4
1

5


16

10

1
 7



1


2


3


4

5


6


7


8


9


10

1
1


1
2


1
3



1
4

15


1
6
1

7


1


2


3


4


5

6


7


9


8

1
0


1
1


1

2


13

1
4


1
5


1
6


1
7


Figure 5: Sample policy

B. Vocking. Randomized pursuit-evasion in graphs. In
Proc. of the Intl. Colloq. on Automata, Languages and
Programming, 2002.

[2] J. Albus. Brains, Behaviour, and Robotics.
McGraw-Hill, 1981.

[3] L. Baird. Residual algorithms: Reinforcement learning
with function approximation. In Proc. of the 12th Intl.
Conf. on Machine Learning. Morgan Kaufmann, 1995.

[4] M. Benda, V. Jagannathan, and R. Rodhiawalla. On
optimal cooperation of knowledge sources. Technical
Report, Boeing Computer Services, 1985.

[5] T. Haynes and S. Sen. The evolution of multiagent
coordination strategies. Adaptive Behavior, 1997.

[6] G. Hinton. Distributed representations. Technical
Report, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, 1984.

[7] V. Isler, S. Kannan, and S. Khanna. Randomized
pursuit-evasion with local visibility. SIAM Journal on
Discrete Mathematics, 20(1):26–41, 2006.

[8] P. Kanerva. Sparse Distributed Memory. MIT Press,
1988.

[9] K. Kostiadis and H. Hu. KaBaGe-RL: Kanerva-based
generalisation and reinforcement learning for
possession football. In Proc. of IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, 2001.

[10] B. Ratitch and D. Precup. Sparse distributed
memories for on-line value-based reinforcement
learning. In Proc. of the European Conf. on Machine
Learning, 2004.

[11] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. Bradford Books, 1998.

[12] M. Tan. Multi-agent reinforcement learning:
Independent vs. cooperative learning. In M. N. Huhns
and M. P. Singh, editors, Readings in Agents, pages
487–494. Morgan Kaufmann, CA, 1997.

[13] C. Watkins and P. Dayan. Q-learning. Machine
Learning, 8:279–292, 1989.




