
Modelling, Analysis and Execution of Multi-Robot Tasks
using Petri Nets

(Short Paper)
Hugo Costelha

Inst. for Sys. and Robotics, IST, Lisboa, Portugal
Polytech. Inst. of Leiria, ESTG, Leiria, Portugal

hcostelha@isr.ist.utl.pt

Pedro Lima
Institute for Systems and Robotics,

Instituto Superior Técnico, Lisboa, Portugal
pal@isr.ist.utl.pt

ABSTRACT
This paper introduces Petri net (PN) based models of co-
operative robotic tasks, namely those involving the coordi-
nation of two or more robots, thus requiring the exchange
of synchronisation messages, either using explicit (e.g., wire-
less) or implicit (e.g., vision-based observation of teammates)
communication. In the models, PN places represent primi-
tive actions, subtasks and predicates set by sensor readings
and communicated messages. Events are associated to PN
transitions. The PN models can be used for task planning,
plan execution and plan analysis. Di�erent PN views enable
the analysis of di�erent properties. In this work we focus on
plan analysis, namely on properties such as boundedness
and liveness, corresponding to checking if resources usage is
stable and plans have no deadlocks, as well as on stochastic
performance, concerning the plan success probability. One
novel feature of our work is that the analysis consists of com-
posing several small action PN models with environment PN
models, leading to a closed loop robot team/environment
analysis methodology. Examples of application to simulated
robotic soccer scenarios are presented.

Categories and Subject Descriptors
I.2.9 [Arti�cial Intelligence]: Robotics; D.2.2 [Software
Engineering]: Design Tools and Techniques�Petri nets

General Terms
Design, Performance, Veri�cation

Keywords
Multi-Robot Systems, Petri nets, Modelling, Analysis

1. INTRODUCTION
Formal task design methods for general robotic tasks en-

able a systematic approach to modelling, analysis and de-
sign, scaling up to realistic applications, of formal proper-
ties, and design from speci�cations. Discrete event systems
[1] provide an appropriate framework for such goal. Sev-
eral approaches described in the literature use �nite sate

Cite as: Modelling, Analysis and Execution of Multi-Robot Tasks using
Petri Nets (Short Paper), Hugo Costelha and Pedro Lima, Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-

Copyright© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

automata (FSA) to model robot behaviors. However, fre-
quently they do not take advantage of the formal properties
associated to such models, using them only as a helpful de-
sign tool.
Discrete event models are especially relevant to model

teamwork, as communication signals exchanged by the in-
volved teammates often involve synchronization events and
transition between discrete states. This is particularly true
for PNs. In PNs, the state information is distributed among
a set of places which capture key conditions governing the
system, and PNs have increased modularity for model-buil-
ding. Furthermore, an automaton can always be represented
as a PN, but not all PNs can be represented as �nite-state
automata, therefore the language expressive power is greater
for PNs than for FSA, enabling richer behavior models [1].
PNs have been used before to model robotic tasks [3, 4],
both for manipulators and mobile robots, taking advantage
of the models to explore task analysis topics.
We have introduced a PN based framework for modelling,

analysis and execution of PN tasks in [5]. In this paper we
extend the proposed framework with multi-robot coopera-
tive task models. Some additional building blocks that en-
hance and modularize even further the task design process
of individual robotic tasks are also described. In the de-
veloped framework, sensor information and events are seen,
respectively, as resources and transitions. The same can be
done regarding communication. Thus, multi-robot cooper-
ative tasks are modeled by adding extra information to the
individual task models to account for synchronisation, either
by explicit or implicit communication. The closest work to
ours can be found in [6], however the authors focus there on
the design of the tasks for execution purposes only, and do
not perform task analysis.
The paper starts by introducing PN models and the basic

building blocks of the framework in Section 2. Section 3
details how individual tasks can be modelled, analysed and
executed. Section 4 introduces the extensions needed for
multi-robot tasks. Finally, Section 5 shows results obtained
in a robotic soccer scenario, followed by the conclusions and
future work in Section 6.

2. PETRI NETS
Petri nets are the base formalism used in this work. We

use both Marked Ordinary Petri nets (MOPNs) [1], wich are
suited for qualitative analysis, and Generalised Stochastic
Petri nets (GSPNs) [7], suited for performance analysis.
The GSPN marking is a semi-Markov process with a dis-

1187

16.,2008,Estoril,Portugal,pp.1187-1190.

crete state space given by the reachability graph of the net
for an initial marking [7]. A Markov chain can be obtained
from the marking process, and the transition probability
matrix computed by using the �ring rates of the exponen-
tial timed transitions and the probabilities associated with
the random switches. This enables the use of tools already
available to analyse Markov chains directly with the GSPN,
instead of relying on e.g., Monte Carlo simulation.
We �rst de�ne some base construction models to assist

us on the design of the robotic tasks, namely Macro Places
and Predicate Places [5]. Macro places are special places
which allow an hierarchical view and use of PN models.
A macro place is actually a place holder for an entire PN
model, which can also contain other macro places, thus in-
troducing models with unlimited depth. We propose a de�-
nition of macro places based on connection places, which can
be Input places, Output places, or both. These connection
places de�ne where to connect incoming arcs (inputs) and
outgoing arcs (outputs) when replacing a macro place by its
corresponding PN model.
A macro place, depicted as a dashed place, is used as a

macro-model of a PN model, allowing a PN model to replace,
or be replaced by, a single place. This PN model must have
at least one input and one output places or, at least one
input/output place, in order to be replacable by a macro
place. Note that a place can be both a connection place and
a macro place. The term expanding a macro place refers to
replacing the macro place by its corresponding PN model.

3. INDIVIDUAL ROBOTIC TASKS
Under this framework, the robotic task models are organ-

ised in layers with di�erent degrees of abstraction, which
include an Environment layer (with PN-based models of the
robot environment), Action Executor and Coordination lay-
ers (with PN-based robot action models) and an Organisa-
tion layer (concerning PN-based role assignment and goal
selection models). The Environment layer models are used
solely for analysis purposes. The other layers are directly
related with what runs in the robot, each of them including
several (usually small) models. Speci�cation of individual
robotic tasks is achieved by designing the various models
separately and by building a PN-based task plan which uses
those models, as detailed in [5].
Analysis of individual robot tasks is done by building a

single PN modelling the entire task execution. The task plan
macro places are expanded until there are no macro places
and then composed with the Environment models, consid-
ering that all predicate places with the same label are the
same, and all the other components are di�erent, regardless
of their label. The resulting PN is analysed using available
PN analysis techniques. These can be logical properties of
the task execution, like deadlocks, conservation properties,
livelocks, etc., or based on Markov chain analysis techniques
for quantitative properties. Given that the marking graph
of a GSPN is a semi-Markov process, a Markov chain re-
sults from the original PN, which is analysed for quantita-
tive properties, such as mean time to reach a given state,
probability of reaching a given state, etc..

4. MULTI-ROBOT TASKS
The main di�erence between individual and cooperative

multi-robot tasks, is that synchronisation must occur among

the robots during task execution. Synchronisation occurs
through the use of communication, either explicitly or im-
plicitly. Explicit communication happens when a robot (the
sender) sends a message directly to the other robot(s), usu-
ally using ethernet or wireless communications. Implicit
communication happens when a robot, or robots, (the re-
ceivers) perceive some situation regarding the sender robot.
As such, in order to model multi-robot tasks with our PN-
based framework, we �rst introduce communication models.

4.1 Communication Models
The major problem when using communication is the time

information takes to go from the sender to the receiver,
which, theoretically, can go from zero time to in�nite time
(communication failure). To model communication, we con-
sidered three di�erent communication models, which cover
this time range. The base concept in these models is that a
robot has a predicate place with a given value and wishes to
transmit that information to a teammate. The teammate,
upon receiving the information, gets its predicate updated
to the same value as its teammate.
The simplest communication model is presented in Fig.

1a. Here the communication is considered instantaneous
and always successful. Increasing the model complexity by
adding a probabilistic arrival time for the communication,
results in the model depicted in Fig. 1b. In this case, com-
munications are still considered always successful. The full
communication model, which adds the failure possibility to
the previous model, is presented in Fig. 1c.

sendMsg

recvMsg

Sender

Receiver

success

(a) Deterministic communi-
cation model without fail-
ures.

sendMsg

recvMsg

Sender

Receiver

success

(b) Communication model
with probabilistic time and
without failures.

sendMsg

recvMsg

Sender

Receiver

success

failure

(c) Full communication
model with probabilistic
time and failures.

sendMsg

recvMsg

Sender

Receiver

success

s

failure

s

r

success

(d) Separate view of the full
communication model.

Figure 1: Communication models.

Given the various communication models, we can choose
which one to use, according to the context where the model
is being applied and the property we wish to analyse. Com-
munication models are distributed as shown in Fig. 1d, thus
the communication transitions include a tag to distinguish
if the transition belongs to the sender or the receiver.

4.2 Communication Actions
In order to use the communication models to model di-

rect communication between robots during a relational task,
we de�ne Communication Actions, which will be used to
establish the required synchronisation. For each sending
communication model there must be a receiving commu-
nication action model. As an example, see the Action Ex-
ecutor level models of actions sendReady2ReceiveBall and
recvReady2ReceiveBall, for a robotic soccer scenario, in
Fig. 2a and Fig. 2b respectively.

1188

sendReady2ReceiveBall

¬SENT_READY2RECEIVEBALL SENT_READY2RECEIVEBALL

s

s

failure

success

ready2receiveBall

init_ok

IN_POSTURE

 Reset mechanism
init_reset

(a) Action sendReady2-
ReceiveBall.

recvReady2ReceiveBall

r

HAS_BALL

init_ok

success

ready2receiveBall

init_reset

¬GOT_READY2RECEIVEBALL GOT_READY2RECEIVEBALL

(b) Action recvReady2Recei-
veBall.

Figure 2: Communication actions.

These actions, besides the speci�cations already de�ned
for ordinary actions, include an output place (represented by
a bold circle) in addition to the usual input/output (dou-
ble circle) place and a reset mechanism. The additional
place is required to distinguish the initial action selection
(token in the double circled place) from signaling that the
action is actually running (token in the bold circled place).
This way, the send/receive predicates are reset to their ini-
tial values (not sent, not got) immediately upon initializa-
tion. Two init transitions are also required to distinguish
the cases when the communication actions started with the
send/receive predicates already set to their initial values or
not.

4.3 Task Plans
With the introduction of the communication models and

communication actions, specifying a multi-robot task is sim-
ilar to the speci�cation of individual robot tasks. The major
di�erence is that we need to use communication actions to
ensure that the subtasks running during a multi-robot task
execution are synchronised. For now we are assuming that
the choice of running a relational task was already done, and
focus on the multi-robot task execution analysis.

4.4 Analysis
The analysis of multi-robot tasks in this framework is

similar to the individual robot tasks case, adding the in-
troduction of the communication models and actions. The
di�erence relies on the need to pre�x all the place labels
identifying the robot they belong to, and the expansion of
the communication actions need an additional step.
Although the action places are always considered di�erent

places, regardless of their label, these are also pre�xed with
the robot label, since di�erent robots can have di�erent ac-
tion models. During the expansion of the macro places for
analysis, all the communication actions are replaced by their
analysis version instead of their original version. If we have
more than two robots, then a selection mechanism must be
used to select to which robot, or robots, the message is to
be sent. The user never needs to see the analysis versions of
the actions, since these are used only internally for analysis,
and are automatically created from their original versions.

5. APPLICATION TO ROBOTIC SOCCER

5.1 Setup
Consider a pass example between two robots, the kicker

and the receiver. Given two subtasks, coordinatedKick,
for the kicker, and coordinatedReceive, for the receiver, a

two-robot Pass task plan corresponds to a single coordina-
tedPass relational task, which consists of running both sub-
tasks in parallel, one in each robot. The key here is to make
sure that both subtasks run synchronously. We assume that
some higher level took the decision that the robots should
commit with the coordinated pass task, and will focus on
the task execution analysis, keeping the critical sections syn-
chronised.
First we de�ne a set of actions, needed for the pass rela-

tional task: standBy, do nothing action; prepBall4Pass -
the robot which has the ball, the kicker, gets ready to pass
the ball to the receiver; sendReady2ReceiveBall - the re-
ceiver acknowledges that it is ready to receive the ball(Fig.
2a); recvReady2ReceiveBall - waits for a communication
from the receiver to know it is ready to receive the ball (Fig.
2b); passBall - passes the ball to another robot. In this case
we considered a simple version, where passes are only done
from near the own goal to near the opponent goal; go2Re-
ceivingPosture - the robot moves to a destination posture,
which is good for receiving the ball. In this case we also
considered a simpler version, where the receiving posture is
near the opponent's goal; grabBall - the robot grabs the
ball.
Subtask coordinatedKick is obtained by running actions

prepBall4Pass and recvReady2ReceiveBall in parallel, fol-
lowed by passBall upon getting predicates READY2PASSBALL
and GOT_READY2RECEIVEBALL to true. The coordinatedRe-

ceive subtask is formed by a sequence of actions, starting
with go2ReceivingPosture, followed by sendReady2Receive-
Ball when predicate IN_POSTURE gets true, followed by grab-
Ball when SENT_READY2RECEIVEBALL gets true. The PN
models of both subtasks are shown in Fig. 3a and Fig. 3b.
Regarding communication, the relevant actions for the

coordinatedPass relational task are recvReady2Receive-

Ball and sendReady2ReceiveBall, the two communication
actions detailed previously.

prepBall4Pass READY2PASSBALL

recvReady2ReceiveBall
GOT_READY2RECEIVEBALL

passBall

(a) coordinatedKick

subtask model.

go2Posture

IN_POSTURE

sendReady2Receive

SENT_READY2RECEIVE

grabBall

(b) coordinatedReceive

subtask model.

Figure 3: Individual pass substasks.

5.2 Task Plan & Analysis
We consider a scenario where both robots are already set

up for the execution of the pass, and analyse its execution.
As such, we place the kicker robot near its own goal with
the ball and the receiver robot near the opponent goal. Both
robots will start immediately in the coordinatedPass rela-
tional task, thus resulting in the Pass task plan depicted
in Fig. 4. Note that this is the team task plan, as the top
and bottom places represent, respectively, the kicker and
receiver task plans.
As said previously, the analysis of this task plan is per-

formed by expanding its macro places, taking into attention
the communication models, obtaining a single PN, which is
analysed both for qualitative and quantitative properties.
Note that the obtained PNs are supposed not to be seen
by the user, given that they are created automatically for
analysis purposes only.

1189

K
ic
ke
r

R
ec
ei
ve
r

R1_coordinatedKick

R2_coordinatedReceive

R1_TEAMMATE_HAS_BALL

R1_standBy

R2_standBy

R2_HAS_BALL

Figure 4: Pass task plan.

Table 1: Plan success probability vs transition rates.

Action Comm. Comm. Plan success

Env. success success failure probability

1 1 10 1 1 0.11
2 1 10 1 10 0.04
3 1 10 10 1 0.39
4 1 10 10 10 0.23
5 1 10 100 0.01 0.51
6 1 10 10000 0.0001 0.51
7 1 20 10000 0.0001 0.70

5.3 Results
Given the various models of the actions and the analy-

sis techniques described earlier, we obtained several results
concerning the expected plan success probability using the
TimeNET tool [8]. We started by testing with a determin-
istic environment, i.e., an environment without stochastic
transitions. Given that the only actions which directly in-
clude failures are the communication actions, the plan suc-
cess probability in this case depends only on the relation
between the two communication rates, success and failure.
In that case, the plan success probability is given by

PPlan success =
λcomm success

λcomm success + λcomm failure

Using a probabilistic environment where it was considered
that the ball could move uncontrolled and where losing the
ball is also uncontrollable, we have a more realistic model.
In this case we experimented with di�erent rates for the
Environment stochastic transitions, for the Actions success
transitions and, for the communication success and commu-
nication failure transitions, obtaining the results in Table 1.
In the table we can see the in�uence of the various rates in
the plan success probability. It clearly shows the expected
result, i.e, the communication plays an important role in the
success of the plan. Furthermore, in such an environment,
high success probabilities are always di�cult to achieve. Ex-
periment 4, 5 and 6 clearly show the in�uence of increasing
the proportion between the success communication rate and
the other rates. Looking at experiment 5 and 6, we see that,
at some point, increasing that proportion does not yeld rel-
evant improvements to the plan success probability. In that
case the other option is to improve the success of the other
actions, as shown by experiment 7.
Given that the plan is purely sequential, in terms of action

execution we always end in a deadlock. In the determinis-
tic environment case the resulting PN has two deadlocks,
corresponding to the successful termination (both robots in
the standBy action) and unsuccessful termination (R1 in the
coordinatedKick subtask and R2 in the coordinatedRecei-
ve subtask) of the plan. In the probabilistic case, given that
the ball keeps moving around the �eld, the previous situ-

ations correspond to livelocks. In that case, R2 will reach
standBy since the ball will eventually pass near it, if given
enough time.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we extended an earlier PN-based frame-

work to model robotic tasks involving multiple robots, by
introducing communication models and communication ac-
tions, which allowed us to model and analyse the execution
of multi-robot tasks.
We obtained results in a robotic soccer scenario which

show the analysis potential of the proposed framework re-
garding multi-robot tasks. In order to analyse more complex
multi-robot tasks, with relational subtasks interleaved with
individual subtasks and more than two robots, one needs to
incorporate selection and commitment maintenance mecha-
nisms. These mechanisms already exist in the literature [2]
and we are developing a PN model which will incorporate
them in our model. When analysing the complete models
we will also be able to extract properties concerning the
communication protocols and commitment maintenance.

7. ACKNOWLEDGEMENTS
This work was supported by the Portuguese Fundação

para a Ciência e Tecnologia under under grant SFRH/BD/
12707/2003 and ISR/IST pluriannual funding through the
POS_Conhecimento Program that includes FEDER funds.

8. REFERENCES
[1] C. Cassandras, S. Lafortune. Introduction to Discrete

Event Systems, Kluwer Academic Publishers, 1999.

[2] Philip R. Cohen; Hector J. Levesque, Teamwork,
Nous, vol. 25, no. 4, pp. 487-512, 1991.

[3] F. Wang et al, A Petri-Net Coordination Model for an
Intelligent Mobile Robot, IEEE Transactions on
Robotics and Automation, Vol. 9, No. 3, pp. 257-271,
1993.

[4] L. Montano, F. García, J. Villaroel, Using the Time
Petri Net Formalism for Speci�cation, Validation, and
Code Generation in Robot-Control Applications, The
International Journal of Robotics Research, vol. 19,
no. 1, pp. 59-76, 2000.

[5] H. Costelha, P. Lima, Modelling, Analysis and
Execution of Robotic Tasks using Petri Nets, Proc. of
IROS 2007 - IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1449-1454, San
Diego, CA, USA, 2007.

[6] V. Ziparo, L. Iocchi, Petri Net Plans, Proc. of the
Fourth International Workshop on Modelling of
Objects, Components, and Agents, pp. 267-290,
Turku, Finland, 2006.

[7] N. Viswanadham, Y. Narahari, Performance
Modelling of Automated Manufacturing Systems,
Prentice Hall, 1992.

[8] A. Zimmermann, A Software Tool for the
Performability Evaluation with Stochastic Petri Nets,
http://pdv.cs.tu-berlin.de/�timenet/, 2001.

1190

