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ABSTRACT
Effective norms, emerging from sustained individual inter-
actions over time, can complement societal rules and signif-
icantly enhance performance of individual agents and agent
societies. Researchers have used a model that supports the
emergence of social norms via learning from interaction ex-
periences where each interaction is viewed as a stage game.
In this social learning model, which is distinct from an agent
learning from repeated interactions against the same player,
an agent learns a policy to play the game from repeated in-
teractions with multiple learning agents. The key research
question is to characterize when and how the entire popula-
tion of homogeneous learners converge to a consistent norm
when multiple action combinations yield the same optimal
payoff. In this paper we study two extensions to the so-
cial learning model that significantly enhances its applica-
bility. We first explore the effects of heterogeneous popula-
tions where different agents may be using different learning
algorithms. We also investigate norm emergence when agent
interactions are physically constrained. We consider agents
located on a grid where an agent is more likely to inter-
act with other agents situated closer to it than those that
are situated afar. The key new results include the surpris-
ing acceleration in learning with limited interaction ranges.
We also study the effects of pure-strategy players, i.e., non-
learners in the environment.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Experimentation

Keywords
Norm, Social dilemma, Coordination game

1. INTRODUCTION
Norms or conventions are key influences on social behavior

of humans. Conformity to norms reduces social frictions, re-
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lieves cognitive load on humans, and facilitates coordination.
“Everyone conforms, everyone expects others to conform,
and everyone has good reason to conform because conform-
ing is in each person’s best interest when everyone else plans
to conform” [11]1. Conventions in human societies range
from fashions to tipping, driving etiquette to interaction pro-
tocols. Norms are ingrained in our social milieu and play a
pivotal role in all kinds of business, political, social, and per-
sonal choices and interactions. They are self-enforcing: “A
norm exists in a given social setting to the extent that indi-
viduals usually act in a certain way and are often punished
when seen not to be acting in this way”[1]. Individual agents
in a society can adapt their strategies or behaviors based on
feedback from interactions with other agents. Interactions
between agents can be formulated as a stage game with si-
multaneous moves made by the players [10]. Such stage
games often have multiple equilibrium [13], which makes the
coordination uncertain. While focal points [17] can be used
to disambiguate such choices, they may not exist in all situ-
ations. We are interested in studying the evolution of social
conventions or norms that selects one such equilibrium over
others based on repeated distributed interactions between
agents in a society. Norms can also be thought of as focal
points evolved through learning. Hence emergence of norms
via learning in agent societies promise to be a productive
research area that can improve coordination in agent soci-
eties. These aspects of norms or conventions have merited
in-depth study of the evolution and economics of norms in
social situations [7, 15, 23].

To study the phenomenon of emergence of social norms,
we have assumed that the interactions between the compu-
tational agents are private, i.e., not observable to the other
agents not involved in the interactions. Our experiments
involve interactions represented as symmetrical games with
the same payoff. We consider a population of agents, where,
in each interaction each agent is paired with another agent
selected randomly from its neighborhood or from the pop-
ulation in a non-uniform manner. Each agent is learning
concurrently over repeated interactions with selected oppo-
nents from the society. We also consider the non-uniform
selection criterion when physical proximity is used to bias
the opponent selection. This kind of learning is referred to
in the literature as Social Learning to distinguish it from
learning from repeated interactions against the same oppo-
nent [19].

1Conventions can therefore be substituted as external cor-
relating signals to promote coordination (all coordination is
choosing a solution from a space of possible solutions).
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In contrast to prior work on norm emergence [5, 19, 20],
this paper investigates the norm emergence phenomenon in
more realistic situations where the agents are physically dis-
tributed over a grid space and can use different learning
algorithms. In physical environments, e.g., real-life physical
interactions between humans in the society, agents are much
more likely to interact with those in close physical proxim-
ity compared to others located further away. Such physical
or spatial interaction constraints or biases have been well-
recognized in social sciences [12] and, more recently, in the
multiagent systems literature [18]. In this paper, we first
focus on agents located in a grid world where they interact
predominantly with agents in their physical neighborhood.
The goal is to evaluate the effects of neighborhood sizes on
the rate and pattern of norm emergence. Secondly we eval-
uate the effects of the following factors on the speed and
success of emergence of norms in the agent societies.

1. Homogeneous Vs heterogeneous society of learners.

2. Uniform selection Vs non-uniform selection of oppo-
nents in neighborhood.

2. RELATED WORK
The need for effective norms to control agent behaviors

is well-recognized in multiagent societies [3, 5]. In particu-
lar, norms are key to the efficient functioning of electronic
institutions [9]. Most of the work in multiagent systems on
norms, however, has centered on logic or rule-based speci-
fication and enforcement of norms [6]. Similar to these re-
search, the work on normative, game-theoretic approach to
norm derivation and enforcement also assumes centralized
authority and knowledge, as well as system level goals [2,
3]. While norms can be established by centralized diktat,
norms in real-life often evolve in a bottom-up manner, via
“the gradual accretion of precedent” [23]. We find very little
work in multiagent systems on the distributed emergence of
social norms. We believe that this is an important niche
research area and that effective techniques for distributed
norm emergence based on local interactions and utilities can
bolster the performance of open multiagent systems.

In our formulation, norms evolve as agents learn from their
interactions with other agents in the society using multia-
gent reinforcement learning algorithms [14]. Most multi-
agent reinforcement learning literature involve two agents
iteratively playing a stage game and the goal is to learn
policies to reach preferred equilibrium [16]. Another line of
research considers a large population of agents learning to
play a cooperative game where the reward of each individ-
ual agent depends on the joint action of all the agents in the
population [21]. The goal of the learning agent is to max-
imize an objective function for the entire population, the
world utility.

The social learning framework we use to study norm emer-
gence in a population [19] is somewhat different from both
of these lines of research. This framework considers a poten-
tially large population of learning agents. At each time step,
however, each agent interacts with a single opponent agent
chosen from the population, and the opponent changes at
each interaction. The payoff received by an agent for a time
step depends only on this interaction as is the case when
two agents are learning to play a game. In the two-agent
case, a learner can adapt and respond to the opponent’s
policy. In our framework, however, the opponent changes

at each interaction. It is not clear a priori if the learners
will converge to useful policies in this situation. Other work
with similar interaction assumptions either use determinis-
tic adaptation schemes or assume knowledge of local state
of other agents [5].

3. SOCIAL LEARNING FRAMEWORK
The specific social learning situation for norm evolution

that we consider is that of learning “rules of the road”. In
particular, we will consider the problem of which side of the
road to drive in and who yields if two drivers arrive at an
intersection at the same time from neighboring roads 2. We
will represent each interaction between two drivers as a n-
person, m-action stage game. These stage games typically
have multiple pure strategy equillibria. In each time period,
each agent is paired with another agent from the population
to interact according to some interaction bias. An agent
is randomly assigned to be the row or column player in any
interaction. We assume that the stage game payoff matrix is
know to both players, but agents cannot distinguish between
other players in the population. Hence, each agent can only
develop a single pair of policies, one as a row player and the
other as a column player, to play against any other player
from the agent population. The learning algorithm used by
an agent is fixed, i.e., an intrinsic property of an agent.

When two cars arrive at an intersection, a driver will some-
times have another car on its left and sometimes on its right.
These two experiences can be mapped to two different roles
an agent can assume in this social dilemma scenario and cor-
responds to an agent playing as the row and column player
respectively. Consequently, an agent has a private bimatrix:
a matrix for when it is the row player, one matrix for when
it is the column player. Each agent has a learning algorithm
and learns independently to play. An agent is randomly as-
signed as the row or the column player in every interaction.
Each agent develops a pair of policies, one for its role as a
row player and another for its role as a column player. An
agent does not know the identity of its opponent, nor its op-
ponent’s payoff, but it can observe the action taken by the
opponent (perfect but incomplete information).

We consider the agents are distributed over space where
each agent is located at a grid point (see Figure 1). Each
agent has a fixed location on the grid and hence a static set of
neighbors. In this grid world, an agent can interact only with
agents located within its neighborhood. The neighborhood
of an agent is composed of all agents within a distance D

of its grid location. We have used the Manhattan distance
metric, i.e., |x1−x2|+ |y1− y2| is the distance between grid
locations (x1, y1) and (x2, y2). Different D values are used
to represent different neighborhood sizes.

In each time period, each agent interacts with another
agent in the society. The selection of opponents follow either
of two modes:

Uniform Selection: Agents are randomly selected from
the neighborhood of the learner. So every agent within
the neighborhood is selected with uniform probability
for the interaction.

2It might seem to the modern reader that “rules of the road”
are always fixed by authority, but historical records show
that “Society often converges on a convention first by an in-
formal process of accretion; later it is codified into law.” [23].
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Algorithm 1: Non-uniform selection of learners

initialization : neighborhood distance = D;
for Each player i← 1 to |G| do

Sum disti = 0;
for Each neighbor j with dist di

j < D do

Sum disti = sum
|Nbi|
j=1

1

di
j

;

for Each neighbor j with dist di
j< D do

Pri
j =

1

di
j

∑|Nbi|
j=1

1

di
j

;

3
4

2
1

Figure 1: Agents located on a grid and allowed to
interact only in a limited neighborhood.

Non-uniform Selection: Agents located closer to the learn-
ers are selected for an interaction with higher probabil-
ity. The probability of selection Pri

j is computed from

Algorithm 1, where di
j is the distance between agent

i and agent j and |G| is the grid size. The physical
proximity acts as a bias in the selection process.

4. RESULTS
We present experiments with a society of N agents placed

in a
√

Nx
√

N grid. For the experiments in this paper, we
use 225 agents placed on a 15 by 15 grid. We run experi-
ments using the two-action coordination game, where agents
receive high payoff for using the same action and otherwise
receive a low-payoff (see Table 1). It can model the sit-
uation where agents are deciding which side of the road to
drive on. Note that either action combinations (0,0) or (1,1)
would work equally well. The goal is then for all agent to
develop a norm of choosing the same action consistently.

left right
left 4, 4 -1, -1

right -1, -1 4, 4

Table 1: Payoff in a coordination game.

A payoff of 1.5 is achieved when the agents use a uniform

distribution over their actions when playing the game. The
maximum reachable payoff for this game is is 4 and is ob-
tained when the players play joint actions (L,L) or (R,R).
However, as the learners use ε-greedy scheme, the maximum
payoff value cannot be reached. We recognize that a norm
has emerged when the average payoff reaches 3.5.

Though some aspects of results from our simulated agent
society can be transferred to human situations (with addi-
tional mechanisms such as empowering agents with sanc-
tion schemes), our results are targeted towards a better un-
derstanding of how to develop self-adaptive agent societies.
Accordingly, we make no claims about using our results to
predict human social behavior.

4.1 Learning Algorithms Used
We use four different learning algorithms for norm emer-

gence : Q-Learning [22] with ε-greedy exploration with learn-
ing rate α = 0.1 and probability of exploration ε = 0.1,
WoLF-PHC (Win or Learn Fast-Policy Hill Climbing) [4]
with learning rate α = 0.1, Fictitious Play (FP) [8] with rate
of learning 0.1 and Highest Cumulative Reward (HCR) [5,
20]. Q-Learning is well suited for repeated games against un-
known opponents and is widely used in multiagent systems.
WoLF-PHC can learn mixed strategies and is guaranteed
to converge to a Nash equilibrium of the repeated game in
2-person 2-action games. Fictitious Play (FP) is the basic
learning approach widely studied in the game theory liter-
ature. An FP player uses the historical frequency count of
its opponents’ past actions and tries to maximize expected
payoff by playing the best response to the observed mixed
strategy. HCR is a deterministic scheme that uses finite
memory of size M and chooses the action that fetched the
maximum cumulative value over the last M interactions. We
will also present some experiments when a small minority of
the agent population are non-learners, i.e., they play fixed
strategies.

4.2 Effect of neighborhood size
For the first set of experiments, all agents use the WoLF-

PHC learning algorithm. We have experimented by vary-
ing the neighborhood size and observed the corresponding
effects on the rate of convergence of the learning agents.
We present results from experiments with both uniform and
non-uniform selection to understand the effect of the neigh-
borhood size on learning of agents is observed (see Figure 2).
We have tested with four neighborhood distances, D ( 1, 5,
10, and 15), for each agent. When D = 1 only an adjacent
agent is a neighbor (there are 4 neighbors in that case). The
computation of number of neighbors should follow the re-
currence relation Di = 4 · i + Di−1, where D1 = 4. When
the distance is 15, every agent is a neighbor of every agent.

We present in Figures 2(a) and 2(b) the dynamics of the
average payoff over a run of populations of Q-learning and
WOLF-PHC learners respectively when all agents are learn-
ing concurrently. We observe that the smaller the neigh-
borhood distance, the faster the emergence of a norm. It is
also interesting to note from Figure 2(a) and 2(b) that the
learning rate for non-uniform opponent selection falls in be-
tween the smallest (D = 1) and the larger group (D = 5, 10,
15) of neighborhood sizes. Norm emergence in society with
Non-uniform selection does not depend on neighborhood D.

When an agent has four neighbors (D = 1), the agents
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Figure 2: Learning of homogeneous agents.

learn to coordinate faster by driving on the same side of the
road than when it has 35 or 99 neighbors (D = 5 and 10
respectively). For a given number of iterations, the agents
interact more often with a particular neighbors for smaller
neighborhoods. This means that the impact an agent has on
another agent is larger when the neighborhood size is small.
In addition, an agent with few neighbors will encounter few
different behaviors from its neighbors, and it is a priori easier
to coordinate with a small set of agents rather than a larger
one. As the neighborhood distance increases, an agent has
to coordinate with many other agents, and in addition, in-
teractions between two particular neighbors in the network
become less frequent. This decreasing interaction frequency
between pairs of learners increases the time for exploration
of the behavior space and thereby influences the learning
patterns of the agents in the network. This problem is exag-
gerated when every agent is everyone’s neighbor (D = 15)
which further reduces the rate of learning.

When the entire population uses the same learning al-
gorithm, from Figures 3(a), 3(b) and 3(c) it is clearly ob-
served that population of Q-Learners is fastest to evolve
a convention(≈ 100 iterations), followed by the society of
WoLF (≈ 1000 iterations) and FP (≈ 50000 iterations) for
selected values of the neighborhood distance D.

Figure 4 represents, for largest (D = 15) and smallest
(D = 1) neighborhoods, the policy of each agent in the
population at different iterations in a single run. Each cell
represents the policy of an agent: the darker it is, the higher
the probability of driving on the left, whereas lighter colors
denote higher probability of driving on the right. When a
cell is completely dark, or white, it means that the learn-
ing algorithm of the agent has converged. In the particular
runs we present, the norm of “driving on the right” emerges
(over different runs “driving on the left” and “driving on the
right” norms were evolved in roughly the same number of
runs). At iteration 145, the agents are exploring and are
receiving low payoff (see corresponding payoff dynamics in
Figure 2). At iteration 355, for D = 1, we are close to the
inflection point for the curve of the payoff dynamics: the
agents start to favor one norm over the other. For D = 15,
however, there is a lesser bias favoring one action. We can

see that, on the average, the snapshot for D = 1 is lighter
than that with D = 15. At iteration 480, we can see that
many more agents have converged for the smallest compared
to the largest neighborhood. So smaller neighborhoods in-
duce faster learning among agents on a grid.

The above effect of agent neighborhood size on learn-
ing rate was somewhat surprising. A priori, it was un-
clear whether smaller neighborhoods will engender divergent
norms to initially form over the agent space, which would
subsequently delay the convergence of the population to a
consistent norm. Such effects, however, were overshadowed
by the effects of increased interaction frequencies between
neighbors in our framework.

4.3 Influence of non-learning agents
So far, we have observed that all norms with equal payoffs

were evolved roughly with the same frequency over multiple
runs. This is expected because the payoff matrix for the
coordination game (Table 1) has no preference for one norm
over the other. Extraneous effects, however, can bias a so-
ciety of learners towards a particular norm. For example,
some agents may not have learning capabilities and always
choose a predetermined action. We now study the influence
of agents playing a fixed pure strategy (FPS agent) on the
emergence of a norm. We are interested in the effect of mul-
tiple pure strategy players with the same or different fixed
strategies.

We do not preclude the possibility of multiple coexistent
norms in sufficiently isolated populations [19]. Without suf-
ficient isolation, stochastic biases introduce enough differen-
tial to lead to norm conformance. The norm adopted with
larger number of FPS agents is more likely to emerge. Even
with a few FPS agents, for a given agent, most of its neigh-
bors are learners and influences this agent’s eventual norm
selection.

4.3.1 Non-learners use same strategy
In the first experiment, we replace some learning agents by

FPS agents and we study the effect of the speed of emergence
of a norm. When there are no FPS agents, as the learners
explore early in the run, they should encounter each joint ac-
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Figure 3: Learning of homogeneous agents.
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Figure 4: All agents are learning. The whiter cells represents probabilities close to one and darker ones close
to probability zero.

tion in the same proportion on average. When FPS agents
are present, however, learners that have an FPS agent in
their neighborhood should observe a bias towards one strat-
egy which the FPS agent always chooses. As agents start to
exploit, a learner i that has an FPS agent f in its neighbor-
hood should exploit this bias and consequently, it is more
likely to play the action played by f . This bias should also
be boosted by i’s neighbors which are also in the neighbor-
hood of f . Our hypothesis is that with more FPS agents
that play the same action, e.g., all FPS agents want to drive
on the right, the corresponding norm would emerge faster in
the population. In Figure 6, we compare the results when
there are no FPS agents and either 1, 2, 3, or 4 FPS agents
in the population of WoLF-PHC learners3. For these exper-
iments, we used D = 5. Note that all the FPS agents play
the same action (driving on the right).

3When there are multiple FPS agents, we located them as
far as possible from each other. When there are two FPS
agents, they are located at (4,4) and (12,12). When there
are three FPS, they are located at (4,4),(7,8) and (12,12).
When there are four, they are located at (4,4),(12,12),(4,12)
and (12,4)

The first observation from Figure 6 is that norms do not
emerge any faster with only one FPS: the local effect of a
single FPS agent is insufficient to expedite convergence to
a norm. When there are two or more FPS agents, however,
we observed the expected faster norm emergence. With our
choice of locations for the two FPS agents, no learner has
both FPS agents as neighbors. However, the speed of emer-
gence is faster than with one FPS agent in the population.
When there are three FPS agents, some agents have two
FPS agents in their neighborhood, which could help them
to converge faster. However, this is not the case as we ob-
serve a minor effect on the speed of emergence. When there
are four FPS agents, more learners have two FPS agents in
their neighborhood, and we do observe a positive impact on
the speed of emergence. As we had expected, the speed of
emergence increases with the number of FPS agents. How-
ever, we cannot yet accurately predict the variation of the
speed of emergence with number of FPS agents, and we plan
to further investigate this issue.

4.3.2 Non-learners use different strategies
In the previous experiment, all FPS agents were playing
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Figure 5: Probabilities of agents driving on the left. Two FPS players play different fixed strategies.
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the same fixed strategy (driving on the right), and they are
able to speed up the emergence of a norm. But FPS agents
in practice may be unrelated and adopt conflicting behavior,
e.g., some agents alway “drive on the right” and some others
always “drive on the left”. In this case, they are likely to
decrease the speed of emergence, or even prevent the con-
vergence of a norm in the entire population. In [19], we have
observed that two populations that interact infrequently can
develop different norms. Hence, it may be possible that FPS
agents influence other agents in their neighborhood, hence,
different norms emerge in different neighborhoods. In the
next set of experiments, we used two FPS agents playing
different strategy R (for driving on right) and L (driving on
left).

In Figure 5 we present snapshots representing the state of
the policy of the agents in the population at different stages
of the simulation. The two FPS agents are located at loca-
tions (4,12) for R and (12,4) for L. In the two runs, for D = 1
and D = 15, presented in Figure 5, “driving on the right”
is the norm that emerges. We notice that the emergence is

faster when the size of the neighborhood is smaller. When
the simulation is at iteration 45, the agents are exploring,
and the policies of the agents are close to < 0.5, 0.5 >. When
the simulation is at 535, the population starts to learn and a
norm starts to be preferred by a majority of agents. We were
expecting that neighbors of the FPS agents will converge to
the policy of the near-by FPS agent. But we do not observe
this phenomenon, even when the size of the neighborhood
is equal to one (for example the agent that is just below
the agent choosing L has converged to the norm of R). This
may be due to the fact that even with D = 1, three of the
neighbors are learners, who might ultimately lead the neigh-
bor of L to choose R. We plan to run further experiments
to explain this phenomenon. When we ran multiple runs,
we observe that each time, the entire population of learning
agents converges to a norm: the norms driving on the right
and driving on the left emerges with equal frequency. Hence,
we did not observe the establishment of multiple norms in
these population. This is particularly significant since, with
the payoffs we chose (see Table 1), using a single norm in the
population maximizes social welfare4. Hence, social learning
is able to produce social welfare maximizing outcomes even
in the presence of non-learners.

4.4 Effect of Heterogeneous Learners
In heterogeneous populations the learning algorithms used

by different agents vary. We first performed experiments
to evaluate the influence on the norm emergence for each
possible subset of the first three learning algorithms. In a
given setting agents choose randomly from the available set
of learning algorithms. We have also examined the influence
on the norm convergence when all four algorithms are used
in equal numbers by the agents in the society.

First we consider populations where the agents play with
one of two learning algorithms. There are three such hybrid
societies given three learning schemes. Figure 7(a), 7(b),
and 7(c) show the convergence of social learning in such

4If two regions of the population were to adopt distinct
norms, the agents at the border and their neighbors would
suffer a loss of payoff. When a single norm emerges, only
the neighbor of the FPS agents suffer a loss of payoff.
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Figure 7: Agents behaving in different two learner societies.
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situations.
For the learning algorithms in the population, relative

norm emergence rates (see Figure 7) are similar to that in ho-
mogeneous population of learners. We observe that societies
when Q-Learners are present converge faster. In Figure 7(a)
and 7(b) norms emerge within ≈ 500 iterations but when
agents are using only WoLF and FP, around 2000 iterations
are required to evolve a norm (Figure 7(c)).

Now if the degree of learning heterogeneity increases and
all three learner groups are incorporated into the popula-
tion, we find an interesting effect of the neighborhood size
on learning rate. The learning curves show no statistical
difference(see Figure 8). The effect of the neighborhood size
reduces in this case as the probability of getting a neighbor
with same algorithm decreases. From figures 2 and 7, we ob-
serve that the time taken to evolve norms by heterogeneous
groups, with a pair of learners is in between the time taken
by the corresponding homogeneous groups. Similarly in a
society with three learners, shown in Figure 8, time taken
for emergence of norm falls in between that taken by the
two slowest mixed groups containing different combinations
of the three different learning schemes.

We also run experiments where 25% of the agent societies
uses HCR, the deterministic adaptation technique, with M
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Figure 9: Hybrid Agent Society : WoLF, Q-
Learners, FP players, and HCR group with varying
neighborhood.

= 25 and the rest is equally divided between the three learn-
ing schemes. The results obtained from figure 9 corrobo-
rates the patterns observed in the society with three types
of learners.

5. CONCLUSIONS
We investigated a bottom-up process for the evolution of

social norms that depends exclusively on individual experi-
ences rather than observations or hearsay. This social learn-
ing framework requires each agent to learn from repeated
interaction with anonymous members of the society. This is
in contrast to most results in multiagent learning where two
or more agents learn from repeatedly interacting with the
same or different group. Norm emergence in real environ-
ments are likely to be influenced by both physical neighbor-
hood effects imposed by mobility restrictions and biases as
well as diverse learning and reasoning capabilities of mem-
bers of the society. Our primary goal in this paper was
to evaluate the effect of heterogeneous learning populations
and spatial interaction constraints on the speed and nature
of norms that emerges through social learning. We surmised
that limiting interactions may isolate sub-populations, thus
allowing for different norms to evolve in different parts of
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the space. Resolving such emerging conflicts and producing
a consensus norm could have been time-consuming and chal-
lenge to the learners. Non-uniform exploration captures a
certain kind of mobility: because of mobility biases and con-
straints, the interactions between two agents decrease with
increasing distance separating them.

Experimental results, however, demonstrate that agent
populations where interactions are restricted to immediate
neighbor produce faster convergence to social norms! This
is very likely due to the increased number of interactions
between immediate neighbors which allow them to quickly
identify mutually-agreed behavior. This neighbor agreement
speed is found to overshadow the effect of time taken to re-
solve divergent norms. The learning rate for non-uniform op-
ponent’s selection, where the likelihood of selecting on oppo-
nent is inversely proportional to distance, is similar to larger
neighborhood sizes. Mobility biases, reflected by neighbor-
hood sizes, do have real implications for socio-cultural-religious
norms in human societies. We do not focus on modeling hu-
man social phenomena, but given interaction biases between
agents in electronic societies, it is important to understand
corresponding effects.

We investigate the effects of varying neighborhood sizes,
selection criterion, different learning strategies and heteroge-
neous societies on the speed and stability of norm evaluation.
Our experimental results confirm that such distributed, in-
dividual learning is indeed a robust mechanism for evolving
stable social norms. These results confirm that only private
experience is sufficient for the emergence of a norm in a so-
ciety of learning agents. This is in contrast with prior work
on norm evolution which requires agents to have knowledge
about non-local interactions between other agents and their
strategies [5, 7]. The effects of heterogeneity, in terms of
learning algorithms used, is more interesting. Increasing di-
versity obscures the effect of different neighborhood sizes.

We have also studied the influence of agents playing fixed
strategy on the emergence of norms. In particular, few
agents playing the same strategy are able to bias the choice
of the norm adopted. We plan to investigate the influence
of fixed strategy players in non-uniform mode. In this pa-
per, we considered that agents were located in a grid, but
real world communication and social experiences have more
complex topologies. We view this work as a base for explor-
ing more complex environments and norms. In the future,
we plan to investigate the emergence of norms in more real-
istic scenarios, and in particular in scale free networks, small
world networks and social networks. In addition, we want
to evaluate the framework on different games that exhibit
social dilemma. We would also like to study other intriguing
phenomena like punctuated equilibria in social norm evolu-
tion [23] within our framework.

Acknowledgment: A DOD-ARO Grant #W911NF-05-
1-0285 partially supported this work.

6. REFERENCES
[1] R. Axelrod. The complexity of cooperation:

Agent-based models of conflict and cooperation.
Princeton University Press, Princeton, NJ, 1997.

[2] G. Boella and L. Lesmo. A game theoretic approach
to norms. Cognitive Science Quarterly,
2(3–4):492–512, 2002.

[3] G. Boella and L. van der Torre. Norm governed
multiagent systems: The delegation of control to

autonomous agents. In Proceedings of IEEE/WIC IAT
Conference, pages 329–335. IEEE Press, 2003.

[4] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence,
136:215–250, 2002.

[5] J. Delgado, J. M. Pujol, and R. Sangüesa. Emergence
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