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ABSTRACT
In an Evolutionary Algorithm (EA) for optimization prob-
lems, candidate solutions to the problems are individuals in a
population. They produce offsprings by taking evolutionary
operators with user-specific control parameters. The chal-
lenge is then how to effectively select evolutionary operators
and adjust control parameters from generation to genera-
tion and on different problems. We propose a novel mul-
tiagent evolutionary framework based on trust where each
solution is represented as an intelligent agent, and evolu-
tionary operators and control parameters are represented
as services. Agents select services in each generation based
on trust that measures the competency or suitability of the
services for solving particular problems. Multiobjective Op-
timization Problems (MOPs) are used to showcase the value
of our framework. Experimental studies on 35 benchmark
MOPs show that our framework significantly improves the
performance of the state-of-the-art EAs.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; Multiagent systems

General Terms
Design; Algorithms

Keywords
Evolutionary Algorithm; Multiagent Systems; Trust and Rep-
utation; Multiobjective Optimization

1. INTRODUCTION
Evolutionary Algorithms (EAs) [1] are generic population-

based stochastic search techniques inspired by biological evo-
lution of nature selection for solving optimization problems.
In EAs, candidate solutions to the problems play the role of
individuals in a population. They produce offsprings by tak-
ing evolutionary operators (such as crossover and mutation)
with user-specific control parameters. EAs are well known
by its generality and simplicity that they often perform well
approximating solutions to all types of problems in many
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fields such as engineering, economics, robotics, etc. How-
ever, evolutionary operators and control parameters may
vary for different problems. It is time-consuming to deter-
mine the operators and parameters by the trial-and-error
procedure. In addition, the competency of operators may
vary with generations. For example, crossover is often pow-
erful in the earlier stage of EAs, but mutation is effective
when the solutions are similar with each other in the later
stage of EAs. The challenge of EAs is thus how to effectively
select evolutionary operators and adjust control parameters
from generation to generation and on different problems.

Different techniques have been proposed to select evolu-
tionary operators and control parameters in EAs. Igel et
al. [3] propose CMA-ES as an evolution strategy that auto-
matically adjusts control parameters, including the step-size,
matrix mean and covariance. The methods of SaDE [5] and
CoDE [8] not only adjust control parameters but also select
evolutionary operators. However, both SaDE and CoDE in-
troduce some other parameters whose values are predefined
according to previous studies, which limits their generality.

In this paper, we propose a novel multiagent evolutionary
framework based on trust where each solution is represented
as an intelligent agent, and the pairs of evolutionary opera-
tors and control parameters are represented as services. In
our framework, the agents model the trustworthiness of the
services, based on whether the agents’ offsprings produced
by using the services survive to the next generations, which
represents the dynamic competency or suitability of the ser-
vices from generation to generation and on particular opti-
mization problems. The agents will then select the services
with the probabilities correlated to the trustworthiness of
the services. To demonstrate the value of our framework,
we consider the challenges of Multiobjective Optimization
Problems (MOPs) as a case study, whereas it is generally
applicable to other optimization problems. Experimental
results on 35 benchmark MOPs confirm that our framework
significantly improves the performance of the state-of-the-
art EAs. The present work thus represents a promising step
towards the use of multiagent based paradigms in the de-
sign of novel EAs as composing of intelligent agents that
adopt trust modeling techniques for selecting evolutionary
operators and control parameters in multiagent-based EAs.

2. RELATED WORK
CMA-ES [3] is a representative evolution strategy (ES)

to adaptively adjust control parameters for solving MOPs.
In CMA-ES, only one type of evolutionary operator is used
to produce offsprings by a Gaussian mutation. The mean



and variance of the Gaussian distribution are adjusted with
an iteration procedure. Our framework not only adjusts
control parameters but also selects evolutionary operators.
SaDE [5] and CoDE [8] are the two representative algo-
rithms proposed to select evolutionary operators and adjust
control parameters for solving single objective optimization
problems. In SaDE, operators and parameters are gradu-
ally self-adapted by learning from their previous experience
in generating promising solutions. In each generation, op-
erators and parameters are assigned to different individuals
in the current population according to the selection prob-
abilities learned from the previous generations. However,
SaDE computes simple statistics on the experience only af-
ter each 50 generations. In our framework, the competency
or suitability of evolutionary operators and control param-
eters (referred to as the trustworthiness of services) is mod-
eled by cumulating all previous experience based on well
established probabilistic modeling and in a dynamic man-
ner. Also, SaDE adjusts control parameters based on a
normal distribution with a predefined mean based on the
authors’ prior knowledge. The CoDE algorithm randomly
combines three DE operators and three predefined parame-
ters to generate offsprings. Although CoDE obtains better
performance over SaDE, its setting of the control parame-
ters relies on some prior knowledge. All in all, SaDE and
CoDE both introduce some other parameters whose values
are predefined based on previous studies on single objective
optimization problems, which limits their generality to other
problems, e.g. more complex Multiobjective Optimization
Problems (MOPs). In contrast, our selection of operators
and control parameters does not rely on any prior knowl-
edge about the problems. In addition, we design our frame-
work as a multiagent system where candidate solutions are
represented as intelligent agents capable of learning, coop-
eration and adaptation. This design offers great flexibility
and extendability for EAs to employ advanced multiagent
technologies for solving complex optimization problems.
Multiagent technologies have recently been widely used

to design Evolutionary Algorithms (EAs) for solving com-
plex problems [6]. For example, Stonedahl et al. [7] propose
a distributed multiagent-based Genetic Algorithm (GA) to
study how the network density of connections and the in-
teractions between agents affect the performance of the GA.
In the work of Zhong et al. [11] for solving single objective
optimization problems, every solution is considered as an
agent and all agents live in a lattice-like environment. The
actions of agents are advanced evolutionary operator (such
as orthogonal crossover and self-learning operators), but the
agents are not autonomous because they select actions only
based on predefined probabilities. In our framework, agents
autonomously select services by learning the trustworthiness
of the services. Trust plays a crucial role in agent-based ser-
vice selection [10, 9]. It is used by agents to measure the
quality of services and select services of high quality. One
particularly effective way of modeling trust is to use the col-
lective opinions of all agents about the services. We adopt
this method in our framework.
Thus, the contributions of our current work can be sum-

marized as follows: 1) majority of the adaptive EAs have
been proposed to work with single objective optimization
problems. Our generic framework can also be adopted to
solve MOPs and other complex optimization problems; 2)
the few existing adaptive EAs for MOPs adjust only control

parameters, whereas agents in our framework can also select
evolutionary operators; 3) to the best of our knowledge, mul-
tiagent technologies have been adopted to design adaptive
EAs for solving MOPs for the first time; 4) our framework
is also the first attempt to consider the use of trust model-
ing for measuring the dynamic competency of evolutionary
operators and control parameters.

3. BACKGROUND ON MOEA
We demonstrate our framework on solving Multiobjective

Optimization Problems (MOPs) [1]. MOPs involve several
conflicting objectives to be optimized simultaneously. A
minimization of MOPs can be stated as follows:

min F(x⃗) = (f1(x⃗), . . . , fm(x⃗))
s.t. g(x⃗) ≤ 0, h(x⃗) = 0, x⃗ ∈ Ω

(1)

where x⃗ = (x1, . . . , xD), Ω is decision (variable) space, Rm

is objective space, and F : Ω → Rm consists of m real-valued
objective functions with constraints g(x⃗) ≤ 0, h(x⃗) = 0, and
the feasible solution space is Ω = ΠD

i=1[LBi, UBi].
The challenge of MOPs is to find a Pareto set (PS) in-

cluding non-dominated solutions which are evenly scattered
along Pareto front (PF). Multiobjective Evolutionary Al-
gorithms (MOEAs) have been well established as efficient
approaches to solve various MOPs [1].

In MOEAs, the first population of solutions is randomly
generated as Xg = {x⃗i,g|i = 1, . . . , NP, g = 0}, where NP is
the population size and g is the generation index. The next
population is produced by evolutionary operators. We take
the “DE/rand/1/bin” operator as an example. At first, the
operator generates a vector v⃗i,g base on population Xg.

v⃗i,g = x⃗r1,g + F · (x⃗r2,g − x⃗r3,g) (2)

where r1, r2, r3 ∈ [1, NP ] are random integer numbers and
r1 ̸= r2 ̸= r3 ̸= i. The control parameter F is the scaling
factor which amplifies or shrinks the difference vectors.

After that,“DE/rand/1/bin”applies the binomial crossover
operation to produce the offspring vectors:.

Ug = {u⃗i,j,g|i = 1, . . . , NP, j = 1, . . . , D} (3)

u⃗i,j,g =
{

v⃗i,j,g if randj(0, 1) ≤ CR or j = jrand

x⃗i,j,g otherwise.

where randj(0, 1) ∈ [0, 1] is a uniformly distributed random
number, jrand ∈ [1, D] is a randomly chosen integer. If
u⃗i,j,g < LBj , it is set to LBj , if u⃗i,j,g > UBj , set to UBj .
The control parameter CR is the probability for crossover.

Then, MOEAs select part of offsprings to enter the next
generation (u⃗i,g → Xg+1). MOEAs can be generally cate-
gorized into two major classes: decomposition-based (called
MOEA/D) [4] and Pareto dominance-based MOEAs [2, 12].

• In MOEA/D, u⃗i,g → Xg+1 if u⃗i,g ≽ x⃗j,g+1 (∀x⃗j,g+1 ∈
Xg+1)

1 under, for example, Tchebycheff approach [4].

• In Pareto dominance-based MOEAs, u⃗i,g → Xg+1 if
u⃗i,g ≽ x⃗j,g+1 (∀x⃗j,g+1 ∈ Xg+1) under, for example,
crowding distance (NSGAII) [2] or neighborhood den-
sity estimator (SPEA2) [12].

The performance of MOEAs is determined by the opera-
tors and their parameters (i.e. the operator“DE/rand/1/bin”,
and parameters F and CR in the operator mentioned above).
The purpose of our framework is to select proper evolution-
ary operators and control parameters in EAs (i.e. MOEAs).
1“≽” means “be better than or equal”.



4. OUR FRAMEWORK
In MOEAs, solutions in each generation produce offsprings

by performing evolutionary operators with some control pa-
rameters. A plenty of effective evolutionary operators have
been proposed, such as“DE/rand/1/bin”,“DE/rand/2/bin”,
“DE/current-to-rand/1/bin”[8], Simulated Binary Crossover
(SBX), and Polynomial mutation [2]. These operators, con-
figured with different control parameters, exhibit distinguish-
ing competence on different MOPs. The offsprings produced
by some operators and parameters may be able to survive
to the next generation, but some offsprings cannot.
In our multiagent evolutionary framework, each solution

is represented as an agent. The pairs of evolutionary opera-
tors with corresponding control parameters are represented
as services. In each generation, an agent selects a service to
produce a new offspring agent (i.e., by Equations 2 and 3),
which is also a solution. The new offspring agent competes
with other agents in the environment. If the offspring agent
can survive to the next generation, it means that the service
provides a positive outcome, otherwise, the service provides
a negative outcome. The trustworthiness of services can be
used to represent the competency of the services in produc-
ing positive outcomes. The larger number of outcomes a
service can produce, the more suitable the service is to solve
the given problem. Thus, agents in our framework model
the trustworthiness of the services based on the number of
positive and negative outcomes provided by the services in
the past generations. The modeling results will be used by
the agents to make decisions on which services to consume.

4.1 Probabilistic Modeling of Trustworthiness
The trustworthiness of services is normally modeled based

on the number of positive and negative outcomes produced
by them in the past. If we define s as the number of pos-
itive outcomes and f as the number of negative outcomes
provided by a service S, formulated as follows:{

s = s+ 1 if u⃗i,g → Xg+1

f = f + 1 otherwise
(4)

where u⃗i,g → Xg+1 means that the offspring u⃗i,g produced
in the generation g by the service can survive to the next
generation g+1. Whether u⃗i,g → Xg+1 is determined based
on different methods in MOEAs (see Section 3).
Beta distribution is commonly used to model the distribu-

tion of a random variable representing the unknown proba-
bility of a binary event. The Beta probability density func-
tions (PDF) of service S can then be formulated as:

Beta(p(S)|α, β) = Γ(α+ β)

Γ(α)Γ(β)
p(S)α−1(1− p(S))β−1 (5)

where 0 ≤ p(S) ≤ 1 and α, β > 0 with the restriction that
p(S) ̸= 0 if α < 1 and p(S) ̸= 1 if β < 1.
The trustworthiness of S is then the probability expec-

tation value of the Beta distribution, which represents the
relative frequency of positive outcomes in future events [10].

T (S) =
α

α+ β
, where α = s+ 1, β = f + 1 (6)

4.2 Trustworthiness of Service
In this paper, we model the trustworthiness of services by

adopting probabilistic modeling introduced in the previous
section. One thing to note here is that MOEAs generally in-
volve much randomness. A evolutionary operator configured

with the same control parameters may still generate differ-
ent offsprings because of the random values of r1, r2, r3
and randj(0, 1) in Equations 2 and 3. Due to this random-
ness, the trustworthiness of a service cannot be accurately
estimated by a small number of outcomes produced by the
service for a particular family of agents (a solution and its
offsprings). Instead, in our framework, it is modeled based
on the outcomes produced by the service for all agents in
the past generations, which is referred to as reputation [10].

A service is represented by a evolutionary operator and
some control parameters. The evolutionary operator can be
any operator from a list of operators O = {O1, O2, . . . , O|O|}
proposed in MOEAs, where |O| is the number of available
evolutionary operators. Given a specific operator Ok ∈ O
in the service, there will be a set of control parameters
Ck = {Ck

l |l = 1, . . . , |Ck|} associated with the operator Ok,
where |Ck| is the number of control parameters. For exam-
ple, the operator “DE/rand/1/bin” has two control parame-
ters (CR and F ) associated with it (see Section 3). Assume
that a parameter Ck

l takes a continuous value in the range as
Ck

l ∈ [0, 1]. In order to effectively learn the performance of
a control parameter, we divide the range [0, 1] into a set of q
disjoint segments as L = {[0, 1

q
), [ 1

q
, 2
q
), · · · , [ q−1

q
, 1]}. Thus,

a service can be formally defined as a tuple (Ok, C
k) where

Ck = {Ck
l |Ck

l = L(Ck
l ), l = 1, . . . , |Ck|} and L(Ck

l ) is one of
the segments in L for the parameter Ck

l . In another word,
a service is a tuple of a evolutionary operator and a set of
segments for corresponding control parameters. Here, we do
not distinguish a parameter from its segment for simplicity.

For the service (Ok, C
k), we first compute the trustworthi-

ness of the operator Ok. It is modeled based on the number
of positive and negative outcomes generated by the agents
performing this operator in the past generations. The total
number of positive and negative outcomes up to the current
generation g is aggregated as follows:{

sg(Ok) = (1− η) · sg−1(Ok) + η ·Ng,s(Ok)
fg(Ok) = (1− η) · fg−1(Ok) + η ·Ng,f (Ok)

(7)

whereNg,s(Ok) andNg,f (Ok) are the number of positive and
negative outcomes produced by the agents performing the
operator Ok in the current generation g, respectively. The
parameter 0 ≤ η ≤ 1 is to determine how much to consider
the current and historical information, where η = 0 means
that only the historical information is considered, whereas
η = 1 only the current information is utilized. After having
sg(Ok) and fg(Ok), the trustworthiness of the operator Ok

in the current generation g, Tg(Ok), can then be computed
according to Equation 6.

In general, one operator is suitable for some specific types
of problems, but may not work well for other types. Even
for the same problem, the competency of the operator may
vary in different generations. For example, the operator
“DE/ran/1/bin” is suitable to multi-modal problems, which
has slow convergency in the earlier stage but exhibits strong
exploration in the later stage of EAs. Based on this phe-
nomenon, the trustworthiness of the operator needs to reflect
the varying competency of the operator under the condition
where trust is hard to build up, but easy to lose.

The aggregation function in Equation 7 is then revised as:{
sg = (1− Tg−1) · sg−1 + Tg−1 ·Ng,s

fg = (1− Tg−1) · fg−1 + Tg−1 ·Ng,f
(8)

where Ok is dropped out for clarity and Tg−1 is the trust-



worthiness of operator Ok in generation g − 1. Equation 8
has two important advantages. It does not have predefined
parameters, compared to Equation 7 that has the parameter
η. Equation 8 also satisfies the above mentioned condition.
When the trustworthiness of the operator in the last gen-
eration g − 1, Tg−1(Ok) is low, the operator needs more
positive outcomes Ng,s(Ok) to build up its trust in the cur-
rent generation g. When Tg−1(Ok) is high, 1 − Tg−1(Ok)
is low, meaning that the less consideration will be given to
historical information. The trustworthiness of the operator
Tg(Ok) will be easy to decline when the number of negative
outcomes in the current generation Ng,f (Ok) is large.
For the service (Ok, C

k), we then compute the trustwor-
thiness of each parameter in Ck (i.e. the value range seg-
ment corresponding to each parameter). When computing
the trustworthiness a parameter, we also need to consider
the operator the parameter is associated with. Take the
parameter Ck

l as an example. The trustworthiness of Ck
l

associated with Ok in the current generation g, denoted as
Tg(C

k
l |Ok), can be calculated in the similar way as calcu-

lating the trustworthiness of the operator Ok (Equation 8),
by counting the numbers of positive and negative outcomes
produced by the operator Ok with the parameter Ck

l , which
are Ng,s(C

k
l |Ok) and Ng,f (C

k
l |Ok) respectively.

After having the trustworthiness of the evolutionary op-
erator Ok, which is Tg(Ok), and each control parameter Ck

l

given Ok, which is Tg(C
k
l |Ok), we can then compute the

trustworthiness of the service (Ok, C
k) by assuming the con-

trol parameters are independent, as follows:

Tg(Ok, C
k) = Tg(Ok) ·

|Ck|∏
l=1

Tg(C
k
l |Ok) (9)

4.3 Trust-based Service Selection
In our framework, agents select services based on the com-

puted trust results of the services. In order to balance be-
tween exploitation and exploration, services are selected in
a probabilistic manner where the probability for a service
to be selected is proportional to its trust. More formally,

there are
∑|O|

k |Ck| · m services in total because there are
|O| evolutionary operators, each operator Ok is associated
with |Ck| control parameters, and each parameter is repre-
sented by one of the q value range segments. The probability
for service (Ok, C

k) with the trust Tg(Ok, C
k) in the current

generation g to be selected in the next generation g + 1 is:

p(Ok, C
k) =

Tg(Ok, C
k)∑∑|O|

k
|Ck|·m Tg(Ok, Ck)

(10)

Note that after an agent selects a service, e.g. (Ok, C
k),

each control parameter in Ck, e.g. Ck
l , is a value range

segment in L, not a specific value. In order for the service
to be used by the agent to produce an offspring, a specific
value for the parameter Ck

l is needed. We assume that the
values of the parameter Ck

l follow a normal distribution in
the range of L(Ck

l ) as Normal(µg(C
k
l ), σ) where µg(C

k
l ) and

σ = 1
3q

are the mean and standard deviation, respectively,

and Ck
l ∈ [0, 1]. The mean µg(C

k
l ) is calculated as follows:

µg(C
k
l ) = (1− Tg−1(C

k
l |Ok)) · µg−1(C

k
l )

+ Tg−1(C
k
l |Ok) ·Mean(Vg(C

k
l |Ok)) (11)

where Vg(C
k
l |Ok) is the set of the values of the param-

eter Ck
l , which produces positive outcomes for the agent

performing the operator Ok in the current generation g.
Mean(Vg(C

k
l |Ok)) is the mean of the values in Vg(C

k
l |Ok).

The rationale behind Equation 11 is that the effectiveness
of the parameter Ck

l measured by Tg−1(C
k
l |Ok), reflects the

appropriation of its mean µg(C
k
l ) up to the generation g−1.

To cope with the dynamics of the effectiveness of µg(C
k
l ),

we formulate it in a similar spirit as Equation 8.

5. EXPERIMENTATION
The experiments are carried out on jMetal 3.12, a Java-

based framework aimed at facilitating the development of
metaheuristics for solving MOPs. The benchmark problems
include 35 test instances: 5 MOPs in the ZDTx family prob-
lems (ZDT1-4 and ZDT6 with 2 objectives), 7 MOPs in
the DTLZx family problems (DTLZ1-7 with 3 objectives),
and 23 MOPs in the CEC2009 MOEA competition. Among
the problems used in the CEC2009 MOEA competition that
involves unconstrained functions, UF1-7 have 2 objectives,
UF8-10 3 objectives, and UF11-13 5 objectives. In addi-
tion, The problems CF1-10 have one constraint except CF6-
7 have two constraints. The decision variables in the Pareto
sets (PSs) of the ZDTx and DTLZx are independent, and
those in the CEC2009 MOEA competition are dependent.
The 35 MOPs have different geometrical shapes in objective
space such as concave, convex, linear, discrete, uni-modal
and multi-modal Pareto fronts (PFs).

The experimental settings are outlined as follows. The
number of decision variablesD used in ZDT1-3 is 30, D = 10
in ZDT4 and ZDT6, D = 7 in DTLZ1, D = 12 in DTLZ2-
6, D = 22 in DTLZ7, D = 30 in UF1-13, and D = 10 in
CF1-10. In MOEA/D, the population size NP is decided
by the number of weight vectors Cm−1

H+m−1 (m is the number
of objectives, H is a predefined integer). For problems with
two objectives, NP = 100 by setting H = 99, NP = 153
for tri-objective problems (H = 16), NP = 715 for five-
objective problems (H = 9). The other algorithms have the
same population size as MOEA/D on different MOPs. We
set the maximum number of function evaluations (FEs) to
be 300, 000 and independent run times to be 30.

We compare with classic MOEAs (NSGAII [2], SPEA2 [12]
and MOEA/D [4]). We also compare with the other ap-
proaches (CMA-ES [3], SaDE [5] and CoDE [8]) that select
evolutionary operators and/or control parameters. Five evo-
lutionary operators are considered, including“DE/rand/1/bin”,
“DE/rand/2/bin”, “DE/current-to-rand/1/bin” [8], “SBX”,
and “Polynomial mutation” [2]. In NSGAII and SPEA2, the
control parameters for SBX are set to ηc = 20 and pc = 0.9,
and those for Polynomial mutation are set to ηm = 20 and
pm = 1/D. In MOEA/D, the control parameters of the op-
erator “DE/rand/1/bin” are set to CR = 1.0 and F = 0.5.
The update approach used in decomposition-based MOEAs
is the Tchebycheff. In our framework, the number of value
range segments for the control parameters is set to q = 3.

All the algorithms are evaluated by the hypervolume met-
ric, which is strictly monotonic with regard to Pareto domi-
nance [12]. The obtained results are compared using median
values and interquartile range (IQR). In order to have statis-
tically sound conclusions, the Wilcoxon rank sum test with
95% confidence level is conducted on the experiment results.

2http://jmetal.sourceforge.net
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Figure 1: The Trustworthiness of Operators Tg(O) Derived by NSGAII-T on DTLZ1, UF1 and CF1

5.1 Improving MOEAs by Our Framework
In this experiment, we extend the classic MOEAs (NS-

GAII [2], SPEA2 [12] and MOEA/D [4]) by our framework
that selects the five evolutionary operators and adjusts con-
trol parameters based on trust. The extended versions of
NSGAII, SPEA2 and MOEA/D are NSGAII-T, SPEA2-T
and MOEA/D-T, respectively. The purpose is to evaluate
whether they can be improved by our framework.

Table 1: Statistical Comparison Results of Classic
MOEAs versus Those Extended by Our Framework

NSGAII-T SPEA2 SPEA2-TMOEA/DMOEA/D-T
NSGAII 18/13/4 17/11/7 19/8/8 19/7/9 22/5/8
NSGAII-T 14/8/13 15/8/12 17/6/12 20/5/10
SPEA2 19/12/4 14/6/15 17/8/10
SPEA2-T 14/7/14 17/6/12
MOEA/D 22/10/3

Table 3 (in the end of the paper) shows the detailed ex-
perimental results, where each tuple reports the median and
IQR of hypervolume over 30 independently runs on 35 MOPs
with 300,000 FES. Table 1 shows the win/tie/lose (w/t/l)
statistical results under the Wilcoxon rank sum test with
95% confidence level. Each tuple w/t/l means that the algo-
rithm at the corresponding column wins on w MOPs, ties on
t MOPs, and loses on l MOPs, compared to the algorithm at
the corresponding row. The results show that the w/t/l val-
ues between the extended versions by our framework and the
classic MOEAs and are 18/13/4, 19/12/4, 22/10/3, respec-
tively. This indicates that our framework can significantly
improve the performance of the classic MOEAs. We also
see that MOEA/D-T is the most effective to solve MOPs
than the classic MOEAs and the other extended MOEAs
(NSGAII-T and SPEA2-T).

5.2 Comparison with Adaptive Approaches
In this experiment, we implement the other adaptive ap-

proaches for selecting evolutionary operators and/or control
parameters (CMA-ES [3], SaDE [5], and CoDE [8]) to extend
MOEA/D for solving MOPs. The purpose is to compare the
effectiveness of them with our framework.
CMA-ES uses only one evolutionary operator (Gaussian

mutation), and adjusts the mean and variance of Gaus-
sian distribution in variable space. SaDE and CoDE select
operators among “DE/rand/1/bin”, “DE/rand/2/bin” and
“DE/current-to-rand/1/bin”. In SaDE, the control parame-

ters are generated by normal distribution, where σCR = 0.3,
µF = 0.5 and σF = 0.1. SaDE introduces four predefined
parameters, including the learning period of 50 generations.
CoDE combines the three operators with a set of fixed pa-
rameter settings, including [CR = 0.1, F = 0.1], [CR =
1.0, F = 0.5] and [CR = 0.2, F = 0.8]. Our framework se-
lects operators among “DE/rand/1/bin”, “DE/rand/2/bin”,
“DE/current-to-rand/1/bin”, “SBX” and “Polynomial muta-
tion”. To have a fair comparison, we implement MOEA/D-
T3 that uses our framework to select among only the first
three operators, which is the same as SaDE and CoDE. The
algorithm MOEA/D-T’ is implemented to use another ver-
sion of our framework that models the trustworthiness of
services with a fixed parameter η = 0.3 using Equation 7.

Table 4 (in the end of the paper) shows the detailed ex-
perimental results of comparing CMA-ES, SaDE and CoDE
with MOEA/D-T3, MOEA/D-T’ and MOEA/D-T, where
each tuple reports the median and IQR of hypervolume over
30 independently runs on 35 MOPs with 300,000 FES. Ta-
ble 2 shows the win/tie/lose (w/t/l) statistical comparison
results of the six algorithms under the Wilcoxon rank sum
test with 95% confidence level.

Table 2: Comparison Results for CMA-ES, SaDE,
CoDE, MOEA/D-T3, MOEA/D-T’, MOEA/D-T

SaDE CoDE MOEA/D-T3MOEA/D-T’MOEA/D-T
CMA-ES 27/4/4 25/8/2 27/7/1 26/8/1 30/4/1
SaDE 10/17/8 17/13/5 14/17/4 21/8/6
CoDE 11/21/3 10/16/9 22/11/2
MOEA/D-T3 6/20/9 9/24/2
MOEA/D-T’ 14/16/5

The w/t/l values between MOEA/D-T3 and CMA-ES
is 27/7/1, indicating that selecting evolutionary operators
is beneficial for solving MOPs. The w/t/l values between
MOEA/D-T3 and SaDE is 17/13/5. Our MOEA/D-T3 not
only has less predefined parameters than SaDE, but also is
more effective than SaDE. The w/t/l value between MOEA/D-
T3 and CoDE is 11/21/3. MOEA/D-T3 is more effective
than CoDE. CoDE fixes the two control parameters CR
and F before the algorithm starts. MOEA/D-T3 learns the
parameters as the algorithm progresses. It demonstrates
that parameter learning based on trust in our framework is
able to automatically adjust control parameters on different
MOPs. The w/t/l values between MOEA/D-T and CMA-
ES, SaDE, CoDE, MOEA/D-T3, MOEA/D-T’ are 30/4/1,
21/8/6, 22/11/2, 9/24/2 and 14/16/5, respectively. Our
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Figure 2: The Trustworthiness of Operators Tg(O) Derived by MOEA/D-T on DTLZ1, UF1 and CF1

MOEA/D-T is the best among the six algorithms. The se-
lection on the two extra evolutionary operators “SBX” and
“Polynomial mutation” does show advantages. MOEA/D-
T outperforms MOEA/D-T’, confirming that the dynamic
modeling of the trustworthiness of services is more effective.

5.3 Effect of PSs on Operator Selection
An important factor that affects the searching ability of

Pareto dominance-based MOEAs (e.g. NSGAII) in variable
space is the interdependency among the decision variables
in Pareto sets (PSs). In this experiment, we want to exam-
ine the effect of PSs on the selection of evolutionary opera-
tors. We evaluate NSGAII-T on the problems DTLZ1, UF1
and CF1. In DTLZ1, decision variables in PSs are indepen-
dent, but in UF1 and CF1, the decision variables are inter-
dependent. Figure 1 shows the trustworthiness of operators
Tg(O) in different generations. We can see that in Pareto
dominance-based MOEAs, the evolutionary operators SBX
and Polynomial mutation show great contributions. It is also
evident that SBX does better in independent PSs (DTLZ1)
than interdependent PSs (UF1 and CF1), whereas Polyno-
mial mutation is more suitable to deal with the nonlinear
variable dependencies than independent variables.

5.4 Trustworthiness of Evolutionary Operators
The operators“DE/rand/1/bin”and“DE/rand/2/bin”are

quite similar. However, “DE/current-to-rand/1/bin” is dif-
ferent and it is formulated as follows:

v⃗i,g = x⃗i,g+rand() · (x⃗r1,g−x⃗i,g)+F · (x⃗r2,g−x⃗r3,g) (12)

where r1, r2, r3 ∈ [1, NP ] are random integer numbers and
r1 ̸= r2 ̸= r3 ̸= i, x⃗i is the base vector, and rand() ∈
(0, 1) is a uniform random value. Operator “DE/current-
to-rand/1/bin” generates the new offsprings based on vector
x⃗i, whereas “DE/rand/1/bin” and “DE/rand/2/bin” search
new agent in the global region.
The effectiveness (competency) of evolutionary operators

is evaluated by the trustworthiness of them in our MOEA/D-
T. In this experiment, we investigate the different compe-
tency of the operators in different generations on different
MOPs. Figure 2 shows the trustworthiness of operators
Tg(O) on DTLZ1, UF1, and CF1 by MOEA/D-T in dif-
ferent generations. All results are means of 30 indepen-
dent runs. We can see that the trustworthiness (compe-
tency) of the operators vary from generations to generations

and on different problems. Under the decomposition-based
MOEA method, “DE/rand/1/bin”, “DE/rand/2/bin” and
“DE/current-to-rand/1/bin” are more effective than “SBX”
and “Polynomial”. The trustworthiness of “DE/current-to-
rand/1/bin” increases in the earlier stage then gradually de-
creases in the later stage, whereas the trustworthiness of
“DE/rand/1/bin” and “DE/rand/2/bin” gradually increases
as MOEA/D-T progresses. “DE/current-to-rand/1/bin”has
the search bias based on the base vector (x⃗i) and larger
perturbation (rand()). In the earlier stage of MOEAs, it
has good performance due to the biased search. But its
performance gradually deteriorates in the later stage be-
cause of the uncertain perturbation. “DE/rand/1/bin” and
“DE/rand/2/bin” do not prefer any search direction but
they have strong exploration capability. The competency
of them is low in the earlier stage because of their unbiased
search. But in the later stage, they are more effective than
“DE/current-to-rand/1/bin” due to the better exploration.
Thus, the trustworthiness of the operators modeled by our
framework well reflects their true competency.

5.5 Trustworthiness of Control Parameters
The effectiveness (suitability) of control parameters is also

evaluated by the trustworthiness of them in MOEA/D-T.
In this experiment, we investigate the different suitability of
the control parameters in different generations. Figures 3(a)
and 3(b) show the trustworthiness of the control parameters
(different value range segments for CR and F respectively),
Tg(CR) and Tg(F ), on the problem UF1 by MOEA/D-T,
where {CR,F ∈ [0, 1]} is divided into three segments. Be-
cause of space limitation, we only show the results of the
parameters for the operator “DE/rand/2/bin”.

The trustworthiness of CR ∈ [0.67, 1.00] is high in the
later stage on UF1. The larger value of CR makes the op-
erator to search in a broad region, and it is beneficial for
MOEAs to maintain the population diversity. The trust-
worthiness of F ∈ [0.00, 0.33) gradually increases on UF1.
As the algorithm progresses, the agents (represent the so-
lutions) spread more evenly. It means that the difference
between agents (i.e., x⃗r1,g − x⃗r2,g in Equation 2) becomes
larger. So, in the later stage, the operator “DE/rand/2/bin”
needs to adjust the parameter F to be small for exploitation
to search in a neighboring region. Thus, the trustworthiness
of the control parameters modeled well reflects the varying
competency of them in different generations.
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Figure 3: (a, b) Trustworthiness of Parameters Tg(CR|O) and Tg(F |O) Derived by MOEA/D-T on UF1 and
O = “DE/rand/2/bin” in Different Generations; (c) MOEA/D-T with Different Values of Parameter q

5.6 The Effect of Parameter q

Our framework has only one predefined parameter q, which
is the number of value segments for control parameters. To
investigate the impact of this parameter setting, MOEA/D-
T with q = {1, 3, 5, 7, 9} are tested on 35 MOPs. Figure 3(c)
shows the median and IQR of hypervolume derived from NS-
GAII, SPEA2, MOEA/D and MOEA/D-T over 30 indepen-
dent runs. It is evident that MOEA/D-T is not sensitive to
the setting of q. For all q values, MOEA/D-T outperforms
NSGAII, SPEA2 and MOEA/D.

6. CONCLUSION AND FUTURE WORK
In this paper, a novel multiagent evolutionary framework

based on trust is proposed to effectively select evolutionary
operators and adjust control parameters (represented as ser-
vices), for solving complex optimization problems (such as
MOPs). In the framework, agents (representing solutions)
automatically select services by modeling their trustworthi-
ness based on the number of offsprings produced using them
will survive to the next generation. Experiments carried out
on 35 benchmark MOPs confirm that our framework sig-
nificantly improves the performance of the classic MOEAs
(NSGAII, SPEA2 and MOEA/D) and outperforms the other
three adaptive approaches (CMA-ES, SaDE and CoDE).
For future work, we will examine our framework in a dis-

tributed multiagent system where only partial (local and
neighboring) information about the outcomes of services is
known to agents, towards the development of a distributed
framework. We will also investigate the performance of our
framework on other complex problems, such as constraint
optimization, expensive optimization problems, etc.
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Table 3: Hypervolume Median and IQR of NSGAII, NSGAII-T, SPEA2, SPEA2-T, MOEA/D, MOEA/D-T
MOPs NSGAII NSGAII-T SPEA2 SPEA2-T MOEA/D MOEA/D-T
ZDT1 6.60E-01±3.15E-04– 6.60E-01±3.66E-04– 6.62E-01±1.66E-04≈ 6.62E-01±4.65E-05+ 6.61E-01±2.08E-04– 6.62E-01±4.51E-07
ZDT2 3.27E-01±3.07E-04– 3.27E-01±2.91E-04– 3.28E-01±7.83E-05≈ 3.29E-01±3.85E-05+ 3.28E-01±1.15E-04– 3.28E-01±1.21E-08
ZDT3 5.15E-01±7.64E-05+ 5.15E-01±1.12E-04+ 5.16E-01±8.76E-05+ 5.16E-01±2.71E-05+ 5.14E-01±2.95E-05– 5.14E-01±8.61E-06
ZDT4 6.61E-01±1.83E-04– 6.60E-01±2.94E-04– 6.62E-01±5.06E-05+ 6.62E-01±1.67E-01≈ 6.61E-01±2.66E-04– 6.62E-01±1.05E-04
ZDT6 3.98E-01±3.84E-04– 4.00E-01±3.16E-04– 4.01E-01±2.48E-04– 4.01E-01±2.03E-05+ 4.01E-01±2.50E-07– 4.01E-01±6.21E-09
DTLZ1 7.78E-01±4.39E-03+ 7.76E-01±3.63E-03+ 7.97E-01±5.31E-04+ 7.97E-01±2.52E-04+ 7.61E-01±5.58E-04– 7.61E-01±1.22E-04
DTLZ2 3.93E-01±4.23E-03≈ 3.97E-01±4.28E-03+ 4.19E-01±1.42E-03+ 4.29E-01±8.00E-04+ 3.92E-01±1.30E-03≈ 3.93E-01±2.67E-04
DTLZ3 3.99E-01±7.80E-03+ 3.96E-01±4.96E-03+ 4.28E-01±1.42E-03+ 4.29E-01±8.24E-04+ 3.91E-01±2.12E-03– 3.93E-01±3.15E-04
DTLZ4 3.95E-01±3.33E-03+ 3.94E-01±4.08E-03+ 4.14E-01±1.33E-03+ 4.22E-01±5.10E-04+ 3.95E-01±2.38E-03+ 3.88E-01±2.04E-04
DTLZ5 9.41E-02±1.20E-04+ 9.41E-02±1.38E-04+ 9.45E-02±1.13E-04+ 9.47E-02±2.22E-05+ 9.15E-02±1.24E-05– 9.15E-02±2.49E-07
DTLZ6 9.51E-02±1.49E-02+ 9.46E-02±1.51E-04+ 9.56E-02±3.57E-05+ 9.56E-02±2.03E-05+ 9.24E-02±2.63E-06+ 9.23E-02±1.23E-07
DTLZ7 2.98E-01±2.71E-03+ 3.04E-01±2.91E-03+ 3.07E-01±1.67E-03+ 3.12E-01±1.29E-03+ 2.17E-01±2.27E-03≈ 2.17E-01±2.75E-03
UF1 5.71E-01±1.59E-02– 6.29E-01±1.39E-02– 5.44E-01±2.63E-02– 5.73E-01±3.61E-02– 6.57E-01±2.26E-03≈ 6.57E-01±1.34E-03
UF2 6.30E-01±7.40E-03– 6.48E-01±2.05E-03– 6.33E-01±8.49E-03– 6.42E-01±2.93E-03– 6.47E-01±9.69E-03– 6.56E-01±1.15E-03
UF3 4.67E-01±4.35E-02– 6.36E-01±1.18E-02– 4.37E-01±5.63E-02– 4.43E-01±2.93E-02– 6.37E-01±2.72E-02– 6.50E-01±8.98E-03
UF4 2.64E-01±1.17E-03– 2.79E-01±7.45E-03≈ 2.71E-01±7.26E-04– 2.80E-01±5.16E-04+ 2.27E-01±6.69E-03– 2.78E-01±9.98E-04
UF5 1.65E-01±1.31E-01≈ 3.27E-01±4.94E-02+ 1.87E-01±7.82E-02≈ 1.29E-01±2.03E-01– 9.18E-02±1.52E-01– 2.00E-01±1.12E-01
UF6 2.32E-01±5.92E-02≈ 2.33E-01±8.69E-02≈ 2.44E-01±1.08E-01≈ 2.25E-01±1.05E-01– 1.99E-01±1.35E-01– 2.51E-01±5.94E-02
UF7 4.43E-01±1.27E-01– 4.76E-01±3.68E-03– 4.36E-01±1.51E-01– 4.49E-01±1.26E-02– 4.88E-01±3.94E-03≈ 4.88E-01±2.45E-03
UF8 2.05E-01±1.14E-01– 1.35E-01±1.57E-01– 1.56E-01±8.86E-03– 2.59E-01±9.33E-02– 2.84E-01±5.70E-03– 3.02E-01±3.12E-03
UF9 3.82E-01±1.11E-01– 3.58E-01±1.74E-01– 5.44E-01±9.88E-02– 5.98E-01±1.36E-02≈ 5.32E-01±1.07E-01– 5.46E-01±1.07E-01
UF10 2.21E-02±4.52E-02– 3.76E-02±8.65E-02– 4.56E-02±3.72E-02– 1.14E-01±2.21E-02≈ 4.08E-02±4.72E-02– 1.32E-01±7.59E-02
UF11 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 3.25E-05±9.28E-05– 3.08E-04±2.86E-04
UF12 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
UF13 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
CF1 4.66E-01±1.71E-03+ 4.71E-01±8.97E-04+ 4.62E-01±2.69E-03+ 4.42E-01±5.23E-03– 4.39E-01±1.08E-05≈ 4.59E-01±2.00E-02
CF2 5.88E-01±3.55E-02– 6.09E-01±1.87E-03– 5.72E-01±2.74E-02– 5.61E-01±3.05E-02– 6.50E-01±1.28E-03– 6.51E-01±1.19E-03
CF3 7.56E-02±6.04E-02– 1.46E-01±9.96E-02≈ 1.03E-01±5.43E-02≈ 0.00E-00±5.87E-02– 1.14E-01±3.21E-02≈ 1.18E-01±5.46E-02
CF4 1.59E-01±9.84E-02– 2.02E-01±5.38E-02– 2.94E-02±1.70E-01– 7.55E-02±1.18E-01– 5.44E-01±7.82E-03– 5.49E-01±4.00E-03
CF5 0.00E-00±9.62E-02– 1.53E-01±2.18E-01– 0.00E-00±4.88E-02– 0.00E-00±0.00E-00– 3.17E-01±7.34E-02≈ 3.38E-01±2.00E-01
CF6 3.38E-01±1.48E-01– 4.18E-01±1.28E-01– 2.36E-01±2.50E-01– 1.07E-01±2.25E-01– 6.44E-01±1.52E-02– 6.58E-01±1.96E-03
CF7 1.79E-01±2.38E-01– 2.66E-01±1.79E-01– 0.00E-00±1.65E-01– 0.00E-00±0.00E-00– 4.31E-01±7.78E-02– 4.69E-01±1.94E-01
CF8 0.00E-00±9.89E-02– 1.62E-01±5.95E-02– 2.17E-01±1.97E-01≈ 2.00E-01±2.43E-01≈ 2.24E-01±9.42E-02≈ 2.04E-01±5.07E-02
CF9 2.03E-01±8.58E-02– 2.67E-01±2.05E-02– 2.85E-01±2.06E-02– 3.04E-01±1.96E-02– 3.31E-01±1.50E-02+ 3.25E-01±2.91E-02
CF10 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 1.85E-01±3.78E-02– 2.07E-01±6.46E-02

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively

Table 4: Hypervolume Median and IQR of CMA-ES, SaDE, CoDE, MOEA/D-T3, MOEA/D-T’, MOEA/D-T
MOPs CMA-ES SaDE CoDE MOEA/D-T3 MOEA/D-T’ MOEA/D-T
ZDT1 6.16E-01±1.16E-02– 6.62E-01±9.38E-06– 6.62E-01±1.22E-05– 6.62E-01±2.15E-06≈ 6.62E-01±1.13E-08+ 6.62E-01±4.51E-07
ZDT2 2.99E-01±2.26E-02– 3.28E-01±3.18E-06– 3.28E-01±3.28E-01– 3.28E-01±7.88E-09+ 3.28E-01±3.05E-10+ 3.28E-01±1.21E-08
ZDT3 3.90E-01±5.47E-02– 5.14E-01±1.23E-05– 5.14E-01±1.77E-05– 5.14E-01±2.73E-06≈ 5.14E-01±4.86E-07+ 5.14E-01±8.61E-06
ZDT4 0.00E-00±0.00E-00– 2.10E-01±2.08E-01– 0.00E-00±0.00E-00– 1.08E-01±2.10E-01– 2.75E-01±2.33E-01– 6.62E-01±1.05E-04
ZDT6 2.57E-01±3.83E-02– 4.01E-01±5.60E-07– 4.01E-01±8.23E-08– 4.01E-01±2.24E-08≈ 4.01E-01±1.58E-09+ 4.01E-01±6.21E-09
DTLZ1 0.00E-00±0.00E-00– 7.61E-01±1.63E-04+ 1.06E-01±1.06E-01– 7.39E-01±6.55E-01– 7.61E-01±5.49E-05≈ 7.61E-01±1.22E-04
DTLZ2 3.90E-01±4.01E-03– 3.93E-01±3.00E-04+ 3.93E-01±2.77E-04+ 3.93E-01±2.32E-04≈ 3.93E-01±3.07E-04≈ 3.93E-01±2.67E-04
DTLZ3 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 0.00E-00±0.00E-00– 3.93E-01±3.15E-04
DTLZ4 1.94E-01±3.06E-02– 3.89E-01±6.15E-04+ 3.89E-01±5.20E-04+ 3.88E-01±4.63E-04≈ 3.88E-01±4.29E-04≈ 3.88E-01±2.04E-04
DTLZ5 9.11E-02±5.47E-05– 9.15E-02±5.07E-07+ 9.15E-02±6.82E-07≈ 9.15E-02±1.50E-07≈ 9.15E-02±2.50E-08≈ 9.15E-02±2.49E-07
DTLZ6 0.00E-00±0.00E-00– 9.23E-02±6.59E-07≈ 9.23E-02±8.99E-07≈ 9.23E-02±5.58E-08≈ 9.23E-02±1.18E-10≈ 9.23E-02±1.23E-07
DTLZ7 2.28E-01±2.54E-02+ 2.15E-01±2.34E-03≈ 2.16E-01±2.55E-03≈ 2.17E-01±2.65E-03≈ 2.17E-01±2.61E-03≈ 2.17E-01±2.75E-03
UF1 5.22E-01±2.23E-02– 6.40E-01±4.48E-03– 6.55E-01±2.12E-03– 6.55E-01±2.61E-03– 6.53E-01±6.08E-03– 6.57E-01±1.34E-03
UF2 6.24E-01±7.82E-03– 6.49E-01±5.45E-03– 6.53E-01±2.91E-03– 6.52E-01±4.31E-03– 6.49E-01±4.57E-03– 6.56E-01±1.15E-03
UF3 4.52E-01±2.42E-02– 5.16E-01±1.03E-01– 6.34E-01±2.19E-02– 6.46E-01±1.60E-02≈ 6.19E-01±3.39E-02– 6.50E-01±8.98E-03
UF4 2.05E-01±3.66E-03– 2.81E-01±9.38E-04+ 2.77E-01±6.80E-04– 2.79E-01±1.03E-03+ 2.80E-01±1.99E-03+ 2.78E-01±9.98E-04
UF5 0.00E-00±0.00E-00– 1.87E-01±1.07E-01≈ 5.93E-02±1.27E-01– 1.72E-01±1.20E-01≈ 2.34E-01±1.04E-01≈ 2.00E-01±1.12E-01
UF6 7.49E-03±1.84E-02– 2.28E-01±5.13E-02– 2.14E-01±1.31E-01– 2.34E-01±4.18E-02≈ 2.33E-01±6.99E-02– 2.51E-01±5.94E-02
UF7 1.84E-01±1.19E-01– 4.76E-01±5.49E-03– 4.86E-01±3.26E-03– 4.86E-01±2.64E-03– 4.84E-01±7.08E-03– 4.88E-01±2.45E-03
UF8 1.99E-01±1.63E-02– 2.91E-01±6.63E-03– 3.02E-01±3.91E-03≈ 3.01E-01±5.89E-03≈ 2.96E-01±8.34E-03– 3.02E-01±3.12E-03
UF9 4.69E-01±3.80E-02– 6.20E-01±1.13E-01≈ 5.46E-01±1.10E-01≈ 5.45E-01±1.07E-01≈ 5.46E-01±1.06E-01≈ 5.46E-01±1.07E-01
UF10 0.00E-00±0.00E-00– 1.86E-01±4.19E-02+ 8.66E-02±7.76E-02– 1.14E-01±8.39E-02≈ 6.25E-02±1.51E-01≈ 1.32E-01±7.59E-02
UF11 3.18E-04±2.87E-04≈ 1.80E-04±1.91E-04– 3.39E-04±2.15E-04≈ 3.34E-04±2.88E-04≈ 3.08E-04±2.86E-04≈ 3.08E-04±2.86E-04
UF12 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
UF13 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00≈ 0.00E-00±0.00E-00
CF1 4.41E-01±2.00E-02– 4.39E-01±2.00E-02– 4.39E-01±2.00E-02≈ 4.39E-01±2.00E-02≈ 4.39E-01±2.00E-02– 4.59E-01±2.00E-02
CF2 5.72E-01±4.76E-02– 6.50E-01±3.79E-03– 6.50E-01±9.01E-04– 6.50E-01±1.52E-03– 6.50E-01±1.47E-03– 6.51E-01±1.19E-03
CF3 3.13E-02±4.62E-02– 1.44E-01±4.68E-02≈ 1.32E-01±1.23E-01≈ 1.45E-01±6.43E-02≈ 1.33E-01±1.35E-01≈ 1.18E-01±5.46E-02
CF4 3.67E-01±8.93E-02– 5.19E-01±1.07E-02– 5.44E-01±5.55E-03– 5.44E-01±4.30E-03– 5.40E-01±7.07E-03– 5.49E-01±4.00E-03
CF5 0.00E-00±0.00E-00– 2.91E-01±1.69E-01– 3.30E-01±1.68E-01≈ 4.23E-01±2.65E-01≈ 2.92E-01±2.04E-01≈ 3.38E-01±2.00E-01
CF6 6.41E-01±1.18E-02– 6.52E-01±7.46E-03– 6.56E-01±3.13E-03– 6.56E-01±2.53E-03– 6.45E-01±3.12E-02– 6.58E-01±1.96E-03
CF7 0.00E-00±9.56E-03– 5.02E-01±4.71E-02≈ 4.26E-01±2.16E-01– 5.39E-01±2.21E-01≈ 4.07E-01±2.31E-01– 4.69E-01±1.94E-01
CF8 2.02E-01±4.72E-02≈ 1.63E-01±8.09E-02– 1.71E-01±6.53E-02– 2.17E-01±5.64E-02≈ 2.05E-01±6.89E-02≈ 2.04E-01±5.07E-02
CF9 3.02E-01±2.67E-02– 2.78E-01±9.24E-03– 3.07E-01±4.08E-02– 3.15E-01±3.55E-02≈ 2.89E-01±2.80E-02– 3.25E-01±2.91E-02
CF10 0.00E-00±0.00E-00– 2.02E-01±2.61E-03– 2.03E-01±2.37E-03– 2.07E-01±4.39E-04≈ 2.07E-01±3.45E-04≈ 2.07E-01±6.46E-02

+ , ≈ and – represent previous algorithm statistically significant better, similar and worse than the last algorithm, respectively


