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ABSTRACT
We consider the problem of devising incentive strategies for
viral marketing of a product. In particular, we assume that
the seller can influence penetration of the product by offer-
ing two incentive programs: a) direct incentives to poten-
tial buyers (influence) and b) referral rewards for customers
who influence potential buyers to make the purchase (ex-
ploit connections). The problem is to determine the optimal
timing of these programs over a finite time horizon. In con-
trast to algorithmic perspective popular in the literature, we
take a mean-field approach and formulate the problem as a
continuous-time deterministic optimal control problem. We
show that the optimal strategy for the seller has a simple
structure and can take both forms, namely, influence-and-
exploit and exploit-and-influence. We also show that in some
cases it may optimal for the seller to deploy incentive pro-
grams mostly for low degree nodes. We support our theoret-
ical results through numerical studies and provide practical
insights by analyzing various scenarios.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory, Performance
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1. INTRODUCTION
A key research topic in multi-agent systems is to un-

derstand the effect of microdynamics/interactions between
agents on macroscopic properties. Often the agents are a
part of a social structure such as a social network. A com-
mon example is that of a social network that consists of
potential buyers of a particular new product offering in the
market. These buyers interact with each other and influ-
ence each others’ purchase decisions through word-of-mouth
and/or behavior. This so-called social influence exerted by
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agents on their neighboring agents in the network have a
significant role to play in generating a network effect on the
sales of the product. The idea of viral marketing is to essen-
tially exploit the (macroscopic) network effects that result
due to the microdynamics between the agents in the net-
work.

Viral marketing is receiving much attention by practicing
marketers and academics alike. While not a new idea, it has
come to the forefront because of multiple effects - products
have become more complex, making buyers to increasingly
rely on opinions of their peers; consumers have evolved to
distrust advertising; and Web2.0 has revolutionized the way
people can connect, communicate and share. With power
shifting to consumers, it has become important for sellers
to devise effective viral marketing strategies (Godes et al.,
2005). This work is motivated by this urgent need.

For social influence to work, there must be seeds, i.e.,
product advocates to start with. The sellers, therefore, em-
ploy two basic strategies. The first is to create advocates, by
providing incentives to potential buyers to make an actual
purchase. These incentives are typically in the form of dis-
counts, free goodies, etc. The second is to reward product
advocates who ‘put in a good word’ and influence poten-
tial buyers to make the purchase. Thus, the latter program
helps to exploit the impact of social influence while making
a purchasing decision whereas the former program helps to
directly influence the buying behavior by offering discounts.

Since incentives come at a cost, a seller must balance the
revenue she generates through these strategies and the ex-
penditure she incurs in doing so. This poses some non-trivial
challenges. The first is determining incentives themselves,
since response of an individual is contingent on them (too
low a referral reward may not elicit recommendation from
an individual since personal reputation is usually at stake).
Secondly, the two programs are not necessarily causally con-
nected. The reputation of a firm or a brand might create
product advocates without incentives, thereby, requiring a
seller to launch a referral program directly. This necessitates
careful ‘timing’ of these programs.

The objective of this paper is to shed some light on this
practically important and theoretically interesting problem.
In particular, we seek to determine an optimal timing of
these programs over a finite time horizon.

1.1 Related Work
In recent years, problems such as these have attracted

much attention. Several papers investigate ‘influence maxi-



mization’ (see, for example, Domingos and Richardson (2001);
Kempe, Kleinberg, and Tardos (2003); Bharathi, Kempe,
and Salek (2007); Chen, Yaun, and Zhang (2010)), where
the problem is to determine the set of initial adopters who,
through an influence process, can maximize the future adop-
tions of the product. Auriol and Benaim (2000) discuss a dy-
namic model of how standards and norms emerge in decen-
tralized economies. Hartline, Mirrokni, and Sundararajan
(2008); Arthur, Motwani, Sharma, and Xu (2009) consider
the problem of ‘revenue maximization’ for viral marketing
and are close in spirit to the problem we consider in this
paper.

In Hartline et al. (2008) a model is proposed in which
the purchase decision of a buyer is influenced by individuals
who own the product and the price at which the product
is offered. An optimal pricing policy is derived using dy-
namic programming in a symmetric setting (i.e., identical
buyers). In a general setting, finding an optimal strategy
is shown to be NP-hard and approximation algorithms are
considered. The authors suggest influence-and-exploit strat-
egy where selected buyers are given the product for free, and
the seller extracts revenue by making a random sequence of
offers and a greedy pricing strategy for the remaining buyers
to compensate for the initial loss.

Arthur et al. (2009) also considers a model in which a
buyer’s decision is influenced by friends who own the prod-
uct and price at which the product is offered. Sales are
assumed to cascade through the social network. The seller
offers cashback to recommenders and also sets price for each
buyer. The authors show that determining an optimal strat-
egy to maximize expected revenue is NP-hard and propose a
non-adaptive influence-and-exploit policy, which offers prod-
uct to the interior nodes of the max-leaf spanning tree of the
network for free and later exploits their influence by extract-
ing more revenue from the leaf nodes of the tree. They show
that the expected revenue generated from the non-adaptive
strategy is within a constant factor of the optimal revenue
from an adaptive strategy.

1.2 Our Contributions
We consider a seller interested in selling a product to a

population of N agents. The product is assumed to be
durable and free from network externalities. From the seller’s
perspective, each agent assumes one of the following types
at any point in time: potential buyer (one who is yet to make
a purchase), customer (one who has purchased the seller’s
product) and competitor’s customer (one who has purchased
a competing product1). A potential buyer makes a purchase
decision of her own volition (essentially under external in-
fluence) or under social influence. This decision-making is
modeled probabilistically, by specifying for both products
(the seller’s and the competitor’s), probabilities of purchase
under external influence and social influence. The seller can
influence the former through direct incentives (which affect
the price) and the latter through referral rewards. The prob-
lem she faces is to roll out these programs so as to maximize
the profit, which is equal to the revenue obtained by cus-
tomer acquisition minus the expenditure on direct incentives
and referral rewards, over a given time horizon T .

In practice sellers have limited knowledge about the social
network underlying the population, typically, in the form of

1All competitors are aggregated into one single virtual com-
petitor.

a class-level statistical description of it. A class comprises
agents who are considered essentially identical on a variety
of factors (chosen by the seller), such as demographic, eco-
nomic level, number of social contacts and so on. In this
paper we consider this set-up. However to keep it simple,
we assume heterogeneity only in terms of network connec-
tions (in particular, probabilities of purchase under either
external or social influence are assumed to be the same for
all agents); hence classes are based only on the number of
social contacts (degrees). The seller thus knows only the de-
gree distribution and degree-degree correlation of the social
network.

This class-level statistical description of the agent popula-
tion allows us to approximate the stochastic evolution of the
purchase dynamics by a deterministic process described by
ordinary differential equations (ODEs). This is formally es-
tablished as a mean-field limit, taking the number of agents
N → ∞ Benaim and Boudec (2008). With an ODE limit,
we pose the problem as a continuous time optimal control
problem and employ the well known Pontryagin’s Maximum
principle Kirk (1970) to characterize an optimal control. An
optimal control specifies for each class the times at which
direct incentives and referral rewards programs are to be
executed. The following are our main results.

1. We show that an optimal control has a simple struc-
ture: the seller needs to run each of the programs at
most twice for a certain duration. Moreover, it is non-
adaptive (or open-loop). This simplifies the implemen-
tation and practically can help a seller pre-allocate the
budget for her campaign.

2. While influence-and-exploit strategy turns out to be
optimal when social influence is strong in the popu-
lation, exploit-and-influence strategy can be optimal
when the seller has a good reputation.

3. In some settings, the seller may be better off incentiviz-
ing low degree nodes as against the popular approach
of targeting the influentials (high degree nodes). This,
we believe, provides some support to the findings re-
ported in Watts and Dodds (2007) in reference to the
influentials hypothesis.

The approach we have taken to address the problem is
entirely different from the ones in the literature. While a
large size of the population presents a challenge to the ear-
lier approaches, it, in fact, aids us in migrating to a simpler
deterministic description of the dynamics. The assumption
that agents of a class are indistinguishable also fits in natu-
rally with the popular marketing approach of customer seg-
mentation and allows a seller to customize incentives and
referral rewards as per these segments.

In contrast to earlier papers, we have also modeled com-
petition. This is not only close to reality but interestingly it
allows to address some problems in completely different con-
texts. For example, in limiting the spread of misinformation
about an entity or an Internet virus, the objective is to max-
imize nodes with correct information or security patches by
immunizing them (akin to direct incentives) and/or incen-
tivizing them to spread the information they have to their
neighbors (akin to referrals). Our results are, thus, appli-
cable to these problems as well (see Budak et al. (2011) for
discussion of the influence limitation problem).



2. PROBLEM FORMULATION
Consider a population of N agents, indexed by i = 1, 2,

. . . , N . The underlying social network is specified by an
undirected graph G = (V, E). Each agent is identified with
a node in V and (i, j) ∈ E means that i and j are social
contacts and they influence each other in decision-making.
si denotes the state of agent i. si can take three values: 0

(indicates potential buyer), 1 (indicates customer) and −1
(indicates competitor’s customer). Let s := (s1, s2, . . . , sN ).

Each agent makes the purchase decision at a random time
point, independent of all others. It suffices to assume that
time is discrete (denoted by n = 1, 2, . . .) and at each time
step, an agent is chosen uniformly randomly from the popu-
lation for a potential state change. Since there are no repeat
purchases, 1 and −1 are absorbing states. Therefore, the
state change occurs only if the chosen agent is a potential
buyer. Suppose agent i is chosen at a time n. Then one of
the following happens if i is a potential buyer.

1. i buys the seller’s product on her own with proba-
bility α (For example, α = 0.08 means that there is
8% chance that a potential buyer will buy the seller’s
product on her own).

2. i buys the competitor’s product on her own with prob-
ability δ.

3. i selects one of her social contacts at random. If the se-
lected contact is a customer, i buys the seller’s product
under social influence with probability β (For example,
β = 0.1 means that there is 10% chance that a poten-
tial buyer will buy the seller’s product if she interacts
with someone who has already bought the product).

4. i selects one of her social contacts at random. If the
selected contact is a competitor’s customer, i buys the
competitor’s product under social influence with prob-
ability γ.

Clearly, the state process {s(n), n ≥ 1} is a Markov chain.
Now from the seller’s perspective, agents having the same

degree are indistinguishable and the network G is known
only statistically, i.e., G is drawn from an ensemble of ran-
dom undirected graphs of size N , a given degree distribution
P (k) (1 ≤ k ≤ K) and degree-degree correlation function
P (k′|k), which denotes the probability that a given link from
a node of degree k is to a node of degree k′. Note that a
number of well-known graphs such as homogeneous random
graphs, exponential random graphs (e.g., G(n, p) and Watts-
Strogatz network), scale-free networks can be represented
in this framework. We assume that K remains uniformly
bounded as N → ∞.

Denote by ik, rk and θk the fraction of degree-k agents who
are potential buyers, customers and competitor’s customers
respectively (note that normalization is with respect to the
number of class-k agents; hence ik + rk + θk = 1). Let
xk := (ik, rk, θk) and x := (x1, . . . , xK). From the above
assumption, it follows that {x(n), n ≥ 1} is a Markov chain
(as seen by the seller).

The drift of x can be computed considering the four cases
described above. Table 1 shows the corresponding probabil-
ities and the change in xk for degree class-k. Consider as
an example Case 3. The probability of a randomly selected
agent being a potential customer of degree k is P (k)ik. This
agent randomly chooses one of her k social contacts. The

probability that this chosen one is an existing customer is
1

k

∑k
j=1

∑
k′∈K P (k′|k)rk′ =

∑

k′∈K P (k′|k)rk′ . The selected
agent buys the seller’s product under the social influence
from her contact with probability β. Thus the probability
of Case 3 is βP (k)ik

∑

k′∈K P (k′|k)rk′ . One agent changes
her state from 0 (potential customer) to 1 (customer). Hence
the effect on xk is 1

NPk
(−1, 1, 0).

We now make the dependence on the population size N
explicit and denote by FN(x) := [FN

k (x)]Kk=1 the drift of x.
FN
k (x) is as follows.

1

N





−βik
∑

k′∈K
P (k′|k)r

k′−γik
∑

k′∈K
P (k′|k)θ

k′−(α+δ)ik

βik
∑

k′∈K P (k′|k)rk′+αik

γik
∑

k′∈K P (k′|k)θk′+δik





Observe that (i) the number of transitions per agent per
time slot is of the order of 1

N
(ii) the second moment of

number of agent transitions per time slot is bounded and
(iii) FN (x) is a smooth function of 1

N
and x. Let F (x) =

limN→∞
FN (x)
1/N

. It then follows from Theorem 1 of Benaim

and Boudec (2008) that the time evolution of x(n) can be
approximated by the following system of ODEs (with the
same initial conditions).

ẋ = F (x) (1)

More explicitly, for 1 ≤ k ≤ K

i̇k = −βikRk − γikΘk − (α+ δ)ik

ṙk = βikRk + αik

θ̇k = γikΘk + δik

where, Rk :=
∑

k′∈K P (k′|k)rk′ and Θk :=
∑

k′∈K P (k′|k)θk′ .
The seller offers direct incentives and referral rewards to

increase α and β respectively. We model this as follows. A
referral reward of c results in an increase of ǫ1 in β and a
direct incentive of c′ causes α to increase by ǫ2. Thus, for
the duration of the referral reward program, social influence
rate of (β + ǫ1) is operational and the seller incurs a cost of
c for every successful referral. Similarly, if the direct incen-
tive program is executed for some duration, the take-rate
for seller’s product increases to (α + ǫ2) for that duration,
incurring her a cost of c′ for every sale. We normalize c and
c′ with respect to the product price. Thus the price is fixed
to 1. The seller’s problem of maximizing her profit (revenue
minus cost) over a fixed time horizon T by optimally timing
the two program can now be stated formally as follows.

Let uk(t) (resp. vk(t)) denote the control variable indicat-
ing whether or not the referral reward program (resp. direct
incentive program) is offered to class-k at time t. The cost

Case Probability Effect on xk

1 αP (k)ik
1

NPk
(−1, 1, 0)

2 δP (k)ik
1

NPk
(−1, 0, 1)

3 βP (k)ik
∑

k′∈K P (k′|k)rk′
1

NPk
(−1, 1, 0)

4 γP (k)ik
∑

k′∈K P (k′|k)θk′
1

NPk
(−1, 0, 1)

Table 1: Probability and effect on xk for different

cases



incurred in running the referral reward program is

∫ T

0

K
∑

k=1

P (k)uk(t)c(β + ǫ1)ik(t)Rk(t)dt (2)

Recall that the conversion rate of potential buyers under
the program is c(β+ ǫ1)ik(t)Rk(t). The cost incurred in the
direct incentives program is

∫ T

0

K
∑

k=1

P (k)vk(t)c
′(α+ ǫ2)ik(t)dt (3)

Since the product price is unity, the revenue obtained is pro-
portional to the number of customers at the end of horizon,
∑K

k=1 P (k)rk(T ). Denoting the total cost (2)+(3) by C(T )
the problem is

Maximize
K
∑

k=1

P (k)rk(T )− C(T )

subject to

i̇k = −(β + ukǫ1)ikRk − (α+ vkǫ2)ik − γikΘk − δik

ṙk = (β + ukǫ1)ikRk + (α+ vkǫ2)ik

θ̇k = γikΘk + δik

for 1 ≤ k ≤ K and a given initial condition x(0).
Three remarks are in order. The assumption of hetero-

geneity only in the number of social contacts is mainly to
keep the formulation simple and highlight the impact of net-
work structure. Extending this formulation to a general set-
ting is straightforward and will be taken up in a longer ver-
sion of the paper. Our random interaction model essentially
means that the social influence on a potential buyer is the
average influence from her neighbors. This, we believe, is
reasonable since we have also assumed presence of external
influence (through α) on agents2. In the above formulation
we consider fixed rewards and incentives pay-outs (c and c′).
This simplifies implementation in practice. Calibration of c
and c′ can be carried out through numerical studies.

3. STRUCTURE OF OPTIMAL CONTROL
In this section we mathematically prove the structural

properties of an optimal control. To keep the proof sim-
ple, we will assume that the network G is drawn randomly
from a set of regular networks of size N and degree k. This
is without loss of generality.

Let i(t), r(t) and θ(t) denote the fraction of population
in states {0, 1,−1} at time t respectively. Let u(t) ∈ {0, 1}
denote whether or not the referral reward program is offered
at time t and let v(t) ∈ {0, 1} denote whether or not the
direct incentive program is offered at time t. The purchase
dynamics under the influence of these programs are given as
follows:

i̇ = −(β + uǫ1)ir − (α+ vǫ2)i− γiθ − δi (4)

ṙ = (β + uǫ1)ir + (α+ vǫ2)i (5)

θ̇ = γiθ + δi (6)

From (4), (5), and (6), observe that i̇+ ṙ+ θ̇ = 0. There-
fore, it suffices to consider any two equations. Let Ω :=

2For the lack of clear empirical evidence, one may also con-
sider total influence from the neighbors. Mathematically, it
is a simple modification to our formulation.

{(i, r)|i + r ≤ 1, i ≥ 0, r ≥ 0}. Let x(t) := (i(t), r(t)) ∈ Ω
denote the state variable.

The optimal control problem in this simpler setting is as
follows.

Maximize r(T )−

∫ T

0

cu(t)(β + ǫ1)i(t)r(t)dt

−

∫ T

0

c
′
v(t)(α+ ǫ2)i(t))dt (7)

subject to (4), (5) and the following constraints on state and
control variables: for all 0 ≤ t ≤ T , x(t) ∈ Ω, u(t) ∈ {0, 1}
and v(t) ∈ {0, 1}.

Our main result is given in Proposition 1. It shows that an
optimal strategy for the seller is to deploy the two incentive
programs for at most two distinct time periods.

Proposition 1. 1. There exist τ1, τ2 (0 ≤ τ1 ≤ τ2 ≤
T ) such that u∗(t) = 0 for τ1 < t ≤ τ2 and u∗(t) = 1
else.

2. There exist τ3, τ4 (0 ≤ τ3 ≤ τ4 ≤ T ) such that v∗(t) =
0 for τ3 < t ≤ τ4 and v∗(t) = 1 else.

Proof. i(0) > 0 otherwise there is no problem to solve.
Observe that Ω is positively invariant. Therefore a solution
starting from any initial point x(0) ∈ Ω remains confined
to Ω. This allows us to disregard state constraints from the
control formulation.

Let u(t), v(t) ∈ [0, 1] for all t ∈ [0, T ] (This relaxation
allows us to establish existence of an optimal control. We
show that the optimal controls are indeed ‘bang-bang’, i.e.,
u∗(t), v∗(t) ∈ {0, 1} for all t). Writing the problem in Mayer
form, it can be seen that the state space (appropriately ex-
panded with additional variables) is bounded and positively
invariant (thus, state trajectories remain bounded for all ad-
missible pairs); and the system is affine in controls (see (7),
(4) and (5)). Existence of an optimal control is now estab-
lished by Filippov-Cesari theorem.

From (4), (5), and (7), the Hamiltonian is written as fol-
lows.

H(x,p, u, v) = −cu(β + ǫ1)ir − c
′
v(α+ ǫ2)i

−p1[(β + uǫ1)ir + (α+ vǫ2)i+ γiθ + δi]

+p2[(β + uǫ1)ir + (α+ vǫ2)i] (8)

p := (p1, p2) denotes co-state variables. Then according
to Pontryagin’s Maximum Principle, there exist continuous
and piecewise continuously differentiable co-state functions
p1 and p2 that satisfy

ṗ1 = −
∂H

∂i

= [cβ − (p2 − p1 − c)ǫ1]ru+ [c′α− (p2 − p1 − c
′)ǫ2]v

+(p1 − p2)(βr + α) + p1(γ(1− 2i− r) + δ) (9)

ṗ2 = −
∂H

∂r

= [cβ − (p2 − p1 − c)ǫ1)]ui+ (p1 − p2)βi− p1γi, (10)

at all t ∈ [0, T ] where u and v are continuous and satisfy
the following transversality condition

p
∗
1(T ) = 0, p∗2(T ) = 1. (11)

and also satisfy, for all t ∈ [0, T ], u(t) ∈ [0, 1] and v(t) ∈



[0, 1],

H(x∗(t), p∗(t), u∗(t), v(t)) ≥ H(x∗(t), p∗(t), u(t), v(t))
H(x∗(t), p∗(t), u(t), v∗(t)) ≥ H(x∗(t), p∗(t), u(t), v(t)).

(12)

From (8) and (12), we get the following form for controls.

u
∗(t) =

{

1 if (p∗2(t)− p∗1(t)− c)ǫ1 > cβ
0 if (p∗2(t)− p∗1(t)− c)ǫ1 < cβ

(13)

v
∗(t) =

{

1 if (p∗2(t)− p∗1(t)− c′)ǫ2 > c′α
0 if (p∗2(t)− p∗1(t)− c′)ǫ2 < c′α

(14)

In case of equality in the conditions specified in equations
(13) and (14), u∗(t) and v∗(t) may take any arbitrary values
in [0, 1].

Let φ(t) := (p∗2(t)− p∗1(t)− c)ǫ1 − cβ and ψ(t) := (p∗2(t)−
p∗1(t)− c′)ǫ2 − c′α.

We denote by H∗
t the Hamiltonian along optimal state-

control trajectory at time t. The following lemma proves
that Hamiltonian will always remain positive.

Lemma 1. H∗
t > 0 ∀ t ∈ [0, T ].

Proof. From (8) and (11), we have

H
∗
T = [(1− c)ǫ1 − cβ]i∗(T )r∗(T )u∗(T )

+[(1− c
′)ǫ2 − c

′
α]i∗(T )v∗(T )

+(βi∗(T )r∗(T ) + αi
∗(T ))

r(t) is non-decreasing whereas i(t) ↓ 0 and i(t) > 0 for all t
since i(0) > 0. Therefore, H∗

T > 0. The conclusion follows
by noting that the Hamiltonian is constant for autonomous
systems.

The lemma below shows that the co-state variables remain
positive for the whole duration.

Lemma 2. p∗1(t), p
∗
2(t) > 0 ∀ t ∈ [0, T ).

Proof. Suppose p∗1(t) ≤ 0 for all t and let p∗1(t) = 0 at
t = τ (at least one τ exists since p∗1(T ) = 0). Then p∗2(τ ) > 0
otherwise H∗

τ < 0 since u∗(τ ) = 0. Observe from (9) that
ṗ1 < 0 if p1 = 0. Strict inequality in (13) implies that at τ ,
u∗(·) is continuous. Therefore, ṗ1 < 0 in the neighborhood
of 0. Thus p∗1(t1) ≤ 0 implies p∗1(t) < 0 for all t > t1 and
p∗1(T ) 6= 0 which violates (11). It follows that p∗1(t) > 0 for
all t ∈ [0, T ). This in turn implies that p∗2(t) > 0 for all t
otherwise H∗

t < 0.

Lemma 3. p∗2(t) > p∗1(t) ∀ t ∈ [0, T ].

Proof. Suppose not. Let p∗2(t) < p∗1(t) at t = τ . Then
φ(τ ) < 0 and, therefore, u∗(τ ) = 0. (8) then yields H∗

τ < 0,
a contradiction.

Let ζ(t) := (p∗2(t) − p∗1(t))i
∗(t). The lemma that follows

shows that ζ(t) is a decreasing function.

Lemma 4. ζ̇(t) < 0 ∀ t ∈ [0, T ].

Proof. From (4), (9), and (10) we get

ζ̇(t) = −[c(ǫ1 + β)u∗(t)r∗(t) + φ(t)u∗(t)i∗(t)

+c′(ǫ2 + α)v∗(t)

+p∗2(t)(γ(1− i
∗(t)− r

∗(t)) + δ)]i∗(t)

Lemma follows by noting that all terms inside the bracket
are non-negative.

Now consider φ̇(t). From (9), (10), and (8) we get

φ̇(t) = [
H∗

t

i∗(t)
− φ(t)i∗(t)u∗(t)− (p∗2(t)− p

∗
1(t))βi

∗(t)]ǫ1

(p∗2(t)− p∗1(t))i
∗(t) is monotonically decreasing (Lemma 4).

From (4) i∗(t) ↓ 0 exponentially (i∗(t) < i∗(0)e−(α+δ)t). H∗
t

is a positive constant (Lemma 1).
Assume that φ(t) = 0 at three points in time τ1, τ2, τ3.

Therefore, φ̇(τ ) > 0 for either τ = τ1 or τ = τ2. Without

loss of generality, let us say φ̇(τ2) > 0. From the above

equation it follows that φ̇(τ3) > 0 which is not feasible as
φ(τ−3 ) > 0. It follows that φ(t) = 0 at at most two points
in time. Therefore, there exist 0 ≤ τ1 ≤ τ2 ≤ T such that
u∗(t) = 1 for 0 ≤ t ≤ τ1 and τ2 < t ≤ T , and 0 elsewhere.

Similarly, one can show that there exist 0 ≤ τ3 ≤ τ4 ≤ T
such that v∗(t) = 0 for τ3 < t ≤ τ4 and v∗(t) = 1 otherwise.
The proposition is, thus, established.

Proposition 1 implies that both the referral reward and
direct incentives programs are to be deployed at most twice
for certain durations, one in the beginning and the other at
the end. It may happen that both the durations are of length
0 which means that a program is not deployed at all. On
the other hand, it could also get deployed over the complete
time horizon T . This gives a simple and elegant marketing
strategy which is easy to implement for the seller.

The structure of the above optimal control is quite intu-
itive. In the case of the referral reward program, the cost
is proportional to the product of number of potential buy-
ers and customers. Hence to keep the cost low, rewards are
declared in the initial stage (when the number of customers
is less) to motivate product advocates and may also be paid
at the end (when the number of potential buyers is less) to
acquire some additional customers.

In the case of direct incentives, the cost is proportional to
the number of potential buyers. If the initial take rate for
the product is less, this program may get executed at initial
stages to quickly acquire customers whose social influence
can be exploited in the later stages; otherwise more agents
may buy competitor’s product and attract other potential
buyers. Towards the end of the campaign, the number of po-
tential buyers is less; hence direct incentives may be offered
to attract additional customers.

4. NUMERICAL RESULTS
The simple structure of optimal controls given by Propo-

sition 1 allows one to devise incentives programs quite easily
by numerical optimization of τ ’s. Here we obtain an inde-
pendent validation of optimal controls by discretizing (7),
casting it as a nonlinear constrained optimization problem
and using a gradient descent approach to find an optimal
solution. (For discussion on various numerical solution tech-
niques for such problems refer to Kirk (1970)). For all our
experiments, the time horizon T and discretization step-size
are fixed at 10 and 0.1 respectively. The NLP formulation
is not convex. Therefore, we use a multi-start mechanism to
determine an optimal solution. Results are also verified us-
ing the commercial package PROPT which uses pseudospec-
tral methods for solving such problems.

In this paper, we will primarily investigate the initial con-
dition i(0) = 1. This captures the case when the seller and
the competitor(s) enter the market with substitutable prod-
ucts at around the same time (e.g., gaming technologies)
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Figure 1: Optimal marketing strategy for the base

scenario

or when the seller introduces an independent product into
the market (e.g., a book). Of course, similar results can
be obtained for the case where seller and/or competitor al-
ready have some presence in the market (r(0) > 0 and/or
θ(0) > 0).

We fix ǫ1 = ǫ2 = 0.05, γ = 0.1, δ = 0.1 for all numer-
ical studies, and consider β = 0.1, α = 0.08, c = 0.25 and
c′ = 0.3 as the base scenario (These parameter values are
arbitrary and only roughly based on some available data).
The optimal marketing strategy is shown in Figure 1. It
is optimal for the seller to run both the incentive programs
initially for some duration, stop and then run the programs
again towards the end. Note that the optimal strategy is
open loop; hence estimates of i and r are not required for
implementation.

It is, thus, possible for the seller to determine the timing of
her incentives programs numerically. Experimentation with
different values of pay-outs c and c′ (which essentially fix ǫ1
and ǫ2) can be used to understand trade-offs and optimize
these pay-outs.

In the following we undertake an investigation of two im-
portant questions pertaining to the interplay between the
two incentives programs and the impact of network struc-
ture on the them. The former question is important because
influence-and-exploit strategy has received much attention
in the literature. As we show below, exploit-and-influence
strategy can also come into play for some parameter settings.
The second question is linked to the so-called influentials hy-
pothesis which informally says that high degree agents (hubs)
play significant role in product diffusion, and, therefore, are
natural targets for incentives (direct or referral rewards). We
show that in some cases the seller is better off incentivizing
low degree agents (more than high-degree ones). Thus, our
results highlight the need for a careful consideration of the
network structure while making incentive decisions.

4.1 Interplay between Referral and Direct In-
centive Programs

When social influence is strong in the population, i.e., β
is higher, the seller needs to employ only direct incentives
initially. For example, if β is set to 0.13 in the base scenario
then it is optimal to offer referral rewards only at the end
and that too for a short period as shown in Figure 2. This
can be seen as a manifestation of the influence-and-exploit
strategy. On the other hand, if the seller has established
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Figure 2: Influence-and-exploit strategy is optimal

when β is increased to 0.13
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Figure 3: Exploit-and-influence strategy is optimal

when α is increased to 0.09

a good reputation in the market, translating into a higher
value of α, an initial influence step through direct incentives
may not even be required. See from Figure 3 that when
α = 0.09 in the base scenario, it is optimal for the seller
to offer direct incentives only at the end. In this case, for
most portion of the time horizon, the seller must exploit
connections of existing customers and only at the end must
she impart direct influence on potential buyers. We call it
the exploit-and-influence strategy for the seller.

We also observe from Figures 4 and 5 that influence-and-
exploit and exploit-and-influence are optimal strategies for
the seller if she incurs high per conversion pay-outs for re-
ferral and incentive programs respectively.

4.2 Impact of Network Structure on Incentive
Programs

Real-world networks show strong degree correlation amongst
connected nodes. Some networks show assortative mixing
of nodes by degrees where high-degree nodes have most of
their connections to other high-degree nodes. Others show
disassortative mixing where high-degree nodes have most of
their connections to low-degree nodes (Newman (2002)). In
this section, we examine the impact of network structure on
incentives programs.

We consider an undirected correlated network with nodes
belonging to either of two classes A and B with probability
P (A) and P (B) respectively. Class A nodes are of high
degree, say kA and class B nodes are of low degree, say kB.
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Figure 4: Influence-and-exploit strategy is optimal

with pay-outs: c = 0.3, c′ = 0.3
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Figure 5: Exploit-and-influence strategy is optimal

with pay-outs: c = 0.25, c′ = 0.35

P (A|B) is the probability that a given link from class B
node points to a class A node. P (B|A) can be computed
from the following balance equation:

kAP (B|A)P (A) = kBP (A|B)P (B) (15)

We consider two types of network structures. One struc-
ture represents assortative mixing whereas the other one
represents disassortative mixing. To keep things simple and
derive key insights, we assume that the seller is optimizing
implementation of only one incentives program, namely, re-
ferral rewards program. The seller can offer referral rewards
to class A and/or class B nodes to increase their social in-
fluence rate (β) by ǫ. As earlier, she incurs a per conversion
cost of c after normalizing with respect to product price.

We fix α = 0.1, δ = 0.1, β = 0.1, γ = 0.15, ǫ = 0.08, kA =
10, kB = 2, P (A) = 0.1, P (B) = 0.9 for our numerical stud-
ies. For disassortative network, we set P (B|A) = 0.9 whereas
for assortative network, we set P (B|A) = 0.1.

The optimal timing of referral reward program for disas-
sortative network is shown in Figure 6. The seller’s optimal
strategy is to offer referral rewards to class B nodes for the
complete duration whereas rewards to class A nodes are of-
fered initially for a short duration and then again towards
the end for a short duration. In this case, class B nodes
have almost half of their connections going to class A nodes.
Also, major fraction of the population is from class B. So,
referral rewards are offered to class B nodes for entire dura-
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Figure 6: Optimal marketing strategy on a network

with disassortative mixing
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Figure 7: Optimal marketing strategy on a network

with assortative mixing

tion as it increases influence not only on class B nodes but
also on class A nodes. Class A nodes are not rewarded for
the entire duration in order to control the cost.

In the case of assortative network, the optimal strategy
changes completely (see Figure 7). The seller offers referral
rewards to class A nodes for the complete duration whereas
rewards to class B nodes are offered initially for some du-
ration and then again towards the end. In this case, nodes
from both the classes are well connected amongst themselves
with very few connections going across the classes. So, the
optimal reward strategies for both the classes are essentially
independent. For this particular scenario, it turns out that
it is optimal to offer rewards to class A nodes for the en-
tire duration as the cost incurred is not much. Whereas in
the case of class B nodes, referral rewards are discontinued
for some duration in the middle as the cost overshoots the
potential revenue.

The results show that networks with different structures
can result in different optimal strategies for the seller. In
some scenarios, the seller may be better off incentivizing
low degree nodes as against the popular approach of tar-
geting the influentials (high degree nodes), thus, providing
some support to the finding in Watts and Dodds (2007).
In some scenarios, the seller may be better off targeting in-
fluentials thus supporting the results in Goldenberg et al.
(2009). Thus, our results highlight the need for a careful
consideration of the network structure while making incen-



tive decisions.

5. CONCLUSION
In this paper we have addressed the problem of optimal

timing of two incentive programs, namely, direct incentives
and referral rewards, for product diffusion through social
networks. Taking a deviation from the existing approaches,
we formulate the problem as a continuous-time determin-
istic optimal control problem. The optimal strategy for
the seller is to deploy these programs in at most two dis-
tinct time periods. The simplicity of this structure and
non-adaptive nature makes them ideal for implementation
in practice. We further show that if the seller has good rep-
utation in the market, exploit-and-influence strategy can be
optimal whereas if social influence is strong in the popula-
tion, influence-and-exploit strategy can be optimal for the
seller. In the case of correlated networks, our numerical
studies show that the seller need not necessarily offer more
frequent referral reward programs to high degree nodes to
maximize her profit.

There are two immediate directions for future work: (i)
extend heterogeneity of agents to include their external and
social influence probabilities and (ii) devise procedures to
estimate model parameters.
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