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ABSTRACT
Kidney exchange, where needy patients swap incompatible donors
with each other, offers a lifesaving alternative to waitingfor an
organ from the deceased-donor waiting list. Recently,chains—
sequences of transplants initiated by an altruistic kidneydonor—
have shown marked success in practice, yet remain poorly under-
stood. We provide a theoretical analysis of the efficacy of chains
in the most widely used kidney exchange model, proving that long
chains do not help beyond chains of length of 3 in the large. This
completely contradicts our real-world results gathered from the bud-
ding nationwide kidney exchange in the United States; there, solu-
tion quality improves by increasing the chain length cap to 13 or
beyond. We analyze reasons for this gulf between theory and prac-
tice, motivated by our experiences running the only nationwide kid-
ney exchange. We augment the standard kidney exchange modelto
include a variety of real-world features. Experiments in the static
setting support the theory and help determine how large is really
“in the large". Experiments in the dynamic setting cannot becon-
ducted in the large due to computational limitations, but with up to
460 candidates, a chain cap of 4 was best (in fact, better than5).
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I.2.11 [Distributed Artificial Intelligence ]: Multiagent systems;
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1. INTRODUCTION
The role of kidneys is to filter waste from blood. Kidney fail-

ure results in accumulation of this waste, which leads to death in
months. One treatment option is dialysis, in which the patient goes
to a hospital to have his/her blood filtered by an external machine.
Several visits are required per week, and each takes severalhours.
The quality of life on dialysis can be extremely low, and in fact
many patients opt to withdraw from dialysis, leading to a natural
death. Only 12% of dialysis patients survive 10 years [18].
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Instead, the preferred treatment is a kidney transplant. Kidneys
are by far the most common organ to transplant—more prevalent
than all other organ transplants combined. Unfortunately,the de-
mand for kidneys far outstrips supply. In the United States alone, in
2010, 4,654 people died waiting for a life-saving kidney transplant.
During this time, 34,418 people were added to the national waiting
list, while only 10,600 people left the list by receiving a deceased-
donor kidney. The waiting list has 89,808 people, and the median
waiting time is between 2 to 5 years, depending on blood type [16].

For many patients with kidney disease, the best option is to find
a living donor, that is, a healthy person willing to donate one of
his/her two kidneys. Although there are marketplaces for buying
and selling living-donor kidneys, the commercialization of human
organs is almost universally regarded as unethical, and thepractice
is explicitly illegal in most countries. However, in most countries,
live donation is legal, provided it occurs as a gift with no financial
compensation. In 2010, there were 5,467 live donations in the US.

The number of live donations would have been much higher if
it were not for the fact that, in most cases, a potential donorand
his intended recipient are blood-type or tissue-type incompatible.
In the past, the incompatible donor was sent home, leaving the pa-
tient to wait for a deceased-donor kidney. This is where kidney
exchanges come into play, in which patients can swap their incom-
patible donors with each other, in order to each obtain a compatible
donor. While still in their infancy, kidney exchanges have now been
fielded at the regional and national level.

In this paper, we consider altruistic chains, a recent innovation
for barter exchanges that has been widely adopted for kidneys,
but is poorly understood. Section 2 describes the formal exchange
clearing problemand why chains exacerbate the already computa-
tionally intractable problem. Section 3 reports results from the first
(and only) nationwide kidney exchange, using our fielded technol-
ogy; these real-world results clearly show the benefit of integrating
chains into the clearing process. Section 4 formalizes the theoreti-
cal benefit of chains as a kidney exchange scales to the large,and
Section 5 experimentally determines exactly what “large” means.
Section 6 studies the dynamics of kidney exchange over time,us-
ing an extension over the state-of-the-art model to more accurately
represent the realities of modern kidney exchange.

2. THE CLEARING PROBLEM
One can encode ann-patient kidney exchange (and almost any

n-agent barter exchange, such as Netcycler for used goods, Read-
It-Swap-It for used books, the National Odd Shoe Exchange, and
Intervac for exchanging time in holiday homes) as a directedgraph
G(n) as follows. Construct one vertex for each patient. Add a
weighted edgee from one patientvi to anothervj , if vj wants the
item of vi. In the context of kidney exchange, the item is a kidney



from a donor thatvi brings with him into the exchange; the donor
is willing to give a kidney if and only ifvi receives a kidney. The
weightwe of edgee represents the utility tovj of obtainingvi’s
item. In kidney exchange, the methodology for setting weights is
decided by the exchange design committee. The weights take into
account such considerations as age, degree of compatibility, wait
time, and geographic proximity. A cyclec in this graph represents
a possible swap, with each agent in the cycle obtaining the item of
the next agent. The weightwc of a cyclec is the sum of its edge
weights. Anexchangeis a collection of disjoint cycles. (They have
to be disjoint because no donor can give more than one kidney.)

The vanilla version of theclearing problemis to find a maximum-
weight exchange consisting of cycles with length at most some
small constantL (typically, 2 ≤ L ≤ 5). This cycle-length con-
straint is crucial. For one, all operations in a cycle have tobe per-
formed simultaneously; otherwise a donor might back out after his
incompatible partner has received a kidney.1 The availability of
operating rooms, doctors, and staff thus constrains cycle length.

The clearing problem withL > 2 is NP-complete [1]. Yet sig-
nificantly better solutions can be obtained by just allowingcycles
of length 3 instead of allowing 2-cycles only [12]; in practice, a cy-
cle length cap of 3 is typically used. Using a mixed integer program
(MIP) where there is a decision variable for each cycle no longer
thanL and constraints that state that accepted cycles are vertex
disjoint, combined with specialized branch-and-price MIPsolving
software, the (3-cycle) problem is solvable to optimality in practice
at the projected steady-state nationwide scale of 10,000 patients [1].
In all our experiments, we use that algorithm as a subroutine.

A recent innovation in kidney exchange ischains [13, 9, 10].
Each chain starts with analtruistic donor—that is, a donor who
enters the pool, without a candidate, offering to donate a kidney
to any needy candidate in the pool. Chains start with an altruist
donating a kidney to a candidate, whose paired donor donatesa
kidney to another candidate, and so on. Chains can be longer than
cycles in practice because it is not necessary (although desirable)
to carry out all the transplants in a chain simultaneously.2 Already,
chains of length ten or more have been reported in practice [10].
To our knowledge, all kidney exchanges in the US now use chains
(in fact, the National Kidney Registry is using chains only and no
cycles). In our experience, roughly 5% of the pool is altruistic.

There are many more feasible chains in a network than cycles—
because one does not have to find a way to close a chain into a
cycle. The straightforward way to incorporate chains into the op-
timizer is to add from the end of each potential chain a fake edge
of weight 0 to every vertex that represents an altruist. Thisway,
chains look exactly like cycles to the solver and are handledcor-
rectly. Unfortunately, due to the removal of the cap of 3 on cycle
length, this approach does not scale even remotely to the nation-
wide level. Rather, it currently scale only to around 200 patients,
depending on the cap on chain length. (Of course, if the chain
length cap is lower than the cycle length cap, then chains do not
significantly increase the complexity.)

3. NATIONWIDE KIDNEY EXCHANGE
Starting around 2003, several regional kidney exchanges have

gone live in the US. Two examples include those run by the Al-
liance for Paired Donation and the Paired Donation Network.How-

1Such backing out cannot be prevented by legal means because it
is illegal to contract for an organ in most countries.
2Unlike in a cycle, if a chain breaks by some donor backing out,
the chain merely stops, but no patient-donor pair is out their “bar-
gaining chip" (donor kidney).

ever, in 2008, the United Network for Organ Sharing (UNOS)—
which controls all organ transplantation in the US—initiated the
formation of anationwidekidney exchange. The benefits of such a
large-scale exchange are numerous (see, for instance, [5]), and it is
ubiquitously accepted that one centralized exchange is better than
fragmenting the market into separate exchanges. The UNOS na-
tionwide kidney exchange pilot went live with 77 transplantcenters
in October 2010, and uses our algorithms and software to conduct
a match run every month. Starting in May 2011, chains were incor-
porated into the UNOS pilot program. Currently, the cycle cap is 3,
while the chain cap was 20 and is now being increased to infinity if
it turns out to be computationally feasible.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Chain Cap

8

10

12

14

16

18

20

22

24

Ca
rd

in
al

ity

Optimizing for Maximum Cardinality

June 21, 2011
July 19, 2011

Figure 1: Real data from the June/July 2011 UNOS match
runs, optimized for maximum cardinality.
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Figure 2: Real data from the June/July 2011 UNOS match
runs, optimized for maximum total weight.

Figures 1 and 2 show results for two real matches, for June and
July 2011. To show the efficacy of chains, we varied the chain cap
from 1 (i.e., the altruistic donor donates directly to the deceased
waiting list) to 20. In Figure 1, we maximize the cardinalityof
the final matching. That is, we ignore edge weights and assume
all compatible matches are equally good, and determine the match-
ing that allocates kidneys to the most candidates. The size of the
matching increases significantly with chains up to length 9 (June)
or 10 (July). Critically, with long chains we match 1.77 (June) and
2.55 (July) times the number of candidates than would have been
matched with 3-cycles alone. We note that Ashlagi et al. [3] inde-
pendently report similar findings from real-world data sets.

The improvement from long chains is even more drastic when
the edge weights are taken into account, as is the case in the real
UNOS match run. Figure 2 shows that in June, chains of length
up to 13 increase the objective value, while chains of lengthup to
12 increase the objective of the matching in July. Overall, incorpo-
rating chains increases the objective value to 2.98 (June) and 6.00
(July) times that of chains only (with a cycle cap of 3).

It is important to note that the structure of the compatibility



graph,G(n) in this early pilot program is special and, in many
ways, computationally fortuitous. The current UNOS pool consists
mainly of highly sensitizedpatients—that is, patients that are diffi-
cult to match based on their tissue type. Intuitively, thesepatients
were too hard to match regionally and in prior runs of the national
exchange—so the input graph is very sparse. Our other experi-
ments have shown that with a less sensitized pool, we often cannot
even solve the current problem size (with long chains) because the
input graphG(n) is not as sparse. Luckily, in the next section,
we show theoretical results stating that in large kidney pools drawn
from the full set of candidates (i.e., not just highly sensitized ones),
long chains will have negligible effect on the overall cardinality of
the matching with high probability. Therefore, one may not need
to consider long chains in the clearing. This would be desirable in
practice because short chains are (1) computationally dramatically
more tractable for the clearing algorithm (there are fewer of them),
(2) logistically easier to administer, and (3) less likely to fail due
to a positive crossmatch or some non-simultaneous donor backing
out (these two issues will be discussed later).

4. THEORETICAL BOUNDS ON CHAINS
In this section, we prove that using chains of length more than 3

provides no benefit in large, random, unweighted candidate pools.
We will prove this result in the most common model of kidney
exchange. We begin by describing the model.

4.1 Necessary background & model
The need for kidney exchange exists due to the myriad of im-

munological incompatibilities that can be present betweena can-
didate and any potential donor. For instance, theblood typeof
a donor kidney can result in acceptance or outright rejection in a
possible candidate. At a high level, human blood is split into four
types—O, A, B, and AB—based on the presence or absence of the
A and B proteins. While other complications may arise, a typeO
kidney can be transplanted into any candidate; type A and B kid-
neys can be transplanted into A and B candidates respectively, or
an AB candidate; and type AB kidneys are limited to only type AB
candidates. Therefore, some candidates are more difficult to match
with a random donor than others. O-candidates are the hardest to
match because only O-type kidneys can be given to them. Simi-
larly, O-donors are the easiest to match.

With this in mind, candidate-donor pairs in the matching pool
can be labeled based on their blood types using theABO model; it
is thede factomodel for theoretical market design work on kidney
exchange (see, e.g., [2, 5, 7, 15, 17]). Anunder-demandedpair is
any pair such that the donor is not ABO-compatible with the can-
didate. Furthermore, if these pairs contain only type A and Bblood
(e.g., the candidate is type A and the donor is type B), the pair is
calledreciprocal. Any pair in the pool such that the donor is ABO-
compatible with the candidate is calledover-demanded. Further-
more, if a donor and candidate share the same blood type, theyare
a self-demandedpair. Intuitively, under-demanded and reciprocal
pairs are “harder” to match than over-demanded and self-demanded
pairs. In the ABO model, all compatible transplants are considered
to be equally good (i.e., those edges have weight 1 each) and typ-
ically results in the ABO model are derived in the limit, whenthe
number of pairs of each kind approaches infinity.

If blood type compatibility were the only requirement for a suc-
cessful kidney donation, over-demanded and self-demandedpairs
would have no need to enter the exchange pool because they could
simply conduct the transplant within the pair. However, further
complications force their hand: the people in a pair are usually
incompatible due to tissue type. Tissue type, in particularwhat

is known as HLA type, is measured as a combination of six pro-
teins. Each potential candidate and potential donor must betested
for preformed antibodies against these six proteins; this needs to be
done at least once a month because the antibody state of a person
changes over time. An increase in the mismatches between donor
and candidate HLA types decreases the likelihood of a successful
kidney transplant, and can render a donor and candidate incom-
patible. These kinds of blood tests where measurements are taken
separately from the donors and the patients are calledvirtual cross-
matchfor reasons that will become obvious in the next paragraph.

An important challenge is that medical knowledge is incomplete:
even if a patient and donor are compatible based on the virtual
crossmatch (so there is an edge in the input graph), in reality they
might not be compatible (i.e., the edge might not be usable).This is
determined days before the operation by conducting a test called a
crossmatch: blood from the patient and blood from his/her planned
donor are mixed together and if the mixture coagulates, theyare in-
compatible. Such an unfortunate, but very common, occurrence is
called apositive crossmatch. Positive crossmatch-sensitive models
have only recently begun to appear in the literature, and have not
included a study of chains [5, 15].

We will say that if an altruist donates directly to the deceased-
donor waiting list, that constitutes a chain of length 1. If an altruist
donates to a pair, whose donor donates to the deceased-donorwait-
ing list, that constitutes a chain of length 2. If an altruistdonates to
a pair, whose donor donates to a pair, whose donor donates to the
waiting list, that constitutes a chain of length 3, and so on.We are
now ready to prove the main theoretical result of this paper.

4.2 Short chains suffice (in theory)
In this section, we use the canonical model for generating kid-

ney exchange data [5]. It works as follows. We start withG(n),
a large compatibility graph representing a kidney exchangeas de-
scribed above. The set ofn incompatible patient-donor pairs is
partitioned into subsetsVX-Y of typeX-Y , for each combination
of blood typesX andY of the patient and donor respectively. For
each blood typeX we denote the set of altruistic donors with that
blood type byVX , but make no assumptions about the size of these
sets. We assume that a donor and a patient who are blood type
compatible are tissue type incompatible with constant probability
γ̄, corresponding to the virtual crossmatch described above.The
frequency of each blood typeX is denoted byµX .

We are now ready to state our main theoretical result. It extends
the recent results of Ashlagi and Roth [5] to the setting withchains.

THEOREM 1. Assume that̄γ < 2/5, µO < 3µA/2, andµO >
µA > µB > µAB. Then with high probabilityG(n) has an efficient
allocation (i.e., one that saves as many patients as possible) that
uses only cycles of length at most 3 and chains of length at most 3.

The proof follows from three lemmas. The first lemma is a trivial
simplification and extension of Lemma 9.5 of Ashlagi and Roth[5],
which is a generalization of a classic theorem by Erdös and Rényi.
To understand the lemma, denote byG(n, p) a random graph with
n vertices where an edge exists between two vertices with proba-
bility at leastp. For a vector~α = (α1, . . . , αr) whereαi ≥ 0 for
i = 1, . . . , r letG(~α, n, p) be anr-partite graph withr sets of ver-
ticesV1, . . . , Vr where|Vi| = αi ·n for i = 1, . . . , r, and a directed
edge betweenv ∈ Vi andv′ ∈ Vi+1 for i = 1, . . . , r − 1, or be-
tweenv ∈ Vr andv′ ∈ V1, exists with probability at leastp. A per-
fect allocationin a graphG(n, p) matches all the vertices; a perfect
allocation inG(~α, n, p) (consisting of cycles of lengthr) matches
all the vertices in the smallest vertex setVi for i = argminj |Vj |.

Deviating from [5], defineG′(~α, n, p) similarly to G(~α, n, p),



except that there are no edges betweenVr andV1. An allocation in
G′(~α, n, p) consists of chains of lengthr that originate in a vertex
in V1. As before, a perfect allocation inG′(~α, n, p) matches all the
vertices in the smallest vertex setVi for i = argminj |Vj |.

LEMMA 1 (ASHLAGI & ROTH [5]). Letp > 0. ThenG(n, p)
admits a perfect allocation that uses cycles of length at most 3 with
high probability. In addition, for any vector~α as above, the ran-
dom graphsG(~α, n, p) andG′(~α, n, p) admit a perfect allocation
with high probability.

Using Lemma 1, we can assume that if we single out several
large groups of vertices (in a large random compatibility graph) that
correspond to blood type compatible pairs, there will be sufficiently
many edges to admit a perfect matching. For example, if thereare
large sets of AB-O pairs, O-A pairs, and A-AB pairs, then with
high probability we can find an allocation that consists of 3-cycles
that matches all the vertices in the smallest set. Even if we consider
several such allocations sequentially, by applying the union bound
we can see that they all exist with high probability. This essentially
allows us to assume in the proof of the next lemma that any two
vertices that are blood type-compatible are connected by anedge.

LEMMA 2. Let G(n) be a random graph that admits the fol-
lowing allocation:

1. Every self-demanded pair is matched in 2-way or 3-way cy-
cles with other self-demanded pairs.

2. Every B-A pair is matched in a 2-way cycle with an A-B pair.
3. Every A-B pair that is not matched to a B-A pair is matched

in a 3-way cycle with an O-A pair and an A-AB pair.
4. ForX ∈ {A,B}, every over-demanded pairX-O is matched

in a 2-way cycle with an O-X pair.

Then with high probabilityG(n) admits an efficient allocation that
uses cycles of length at most 3 and chains of length at most 3.

PROOF SKETCH. We complete the allocation described in the
lemma’s statement to an efficient allocation. Figure 3 visualizes the
augmented allocation; regular edges are assumed by the lemma’s
formulation while dashed edges are added during this proof.Let
V 1 be the set of vertices not matched by the initial allocation.First,
as many A-donors as possible donate to A-AB pairs and as many
B-donors as possible donate to B-AB pairs (shown in Figure 3 by
dashed edges from A-altruists to A-AB pairs and from B-altruists
to B-AB pairs). In both cases, one of the two vertex sets will be
exhausted. More formally, using Lemma 1 we find a perfect allo-
cation for the subgraph induced byV 1

A andV 1
A-AB , and similarly we

find a perfect allocation for the subgraph induced byV 1
B andV 1

B-AB .
Let V 2 be the vertices not matched by previous allocations. We

find as many 3-way(AB-O,O-A,A-AB) cycles as possible, that
is, we find a perfect allocation for the subgraph induced byV 2

AB-O,
V 2

O-A, andV 2
A-AB . It may be the case thatV 2

A-AB = ∅. LetV 3 be the
set of vertices not matched by previous allocations. Next wefind a
perfect allocation with 3-way(AB-O,O-B,B-AB) cycles. It may
be the case thatV 3

AB-O = ∅ or V 3
B-AB = ∅.

Let V 4 be the vertices not matched by previous allocations. The
next component in the constructed allocation matches as many O-
donors as possible in chains of length 3 of the form(O,O-A,A-AB)
and then(O,O-B,B-AB). This is done sequentially as above. Fi-
nally, we match the remaining O-donors and AB-O pairs with re-
maining under-demanded pairs via chains of length 2 or 2-waycy-
cles (not shown in Figure 3).

Each of the allocations constructed above exists with high prob-
ability; thus (by applying the union bound) they all exist with high

B-AB O-B

B

AB-B

O AB-O B-O

A-AB O-A A-B B-A

AB-A

A

A-O

Figure 3: Accompanying figure to Lemma 2. Altruists are
shown as rectangles; candidate-donor pairs as ovals. Over-
demanded pairs are gray, under-demanded are white, and re-
ciprocal pairs are black. Regular edges appear in the lemma’s
formulation and dashed edges are constructed in the proof.

probability. To complete the proof, we argue that our construction
gives rise to an efficient allocation. Since under our construction all
over-demanded, self-demanded, and reciprocally demandedpairs
are matched, it is sufficient to show that no allocation can match
more under-demanded pairs.

Following Ashlagi and Roth [5], when vertexv participates in
an exchange with under-demanded vertexv′ we say thatv helpsv′.
Self-demanded and reciprocally demanded pairs cannot helpunder-
demanded pairs without involving donors or over-demanded pairs.
Similarly, AB-donors cannot help under-demanded pairs. Inaddi-
tion, only two types of vertices can help two under-demandedpairs:
AB-O pairs can participate in cycles with one of O-A and O-B and
one of A-AB and B-AB, and O-donors can start a chain with the
same types. Any other vertex can help at most one under-demanded
pair, and in particular over-demanded pairs of typeX-Y 6= AB-O
can only help under-demanded vertices of typeY -X.

Now, A-donors can only help A-AB pairs, and B-donors can only
help B-AB pairs. Therefore, it is optimal to match these donors
with their respective under-demanded pairs. Finally, in our con-
structed allocation as many AB-O pairs and O-donors as possible
are helping two under-demanded pairs each, while the rest are help-
ing one under-demanded pair each.

The following lemma directly follows from Proposition 5.2 of [5],
and holds under the assumptions of Theorem 1.

LEMMA 3 (ASHLAGI & ROTH [5]). G(n) has an allocation
as in Lemma 2, up to symmetries between A-B pairs and B-A pairs,
with high probability.

4.3 Discussion
Theorem 1 follows from the proofs of the three lemmas in Sec-

tion 4.2. The theorem itself is motivated by the recent work of
Ashlagi and Roth [5]. One has to be careful, though, not to use
the exact allocation constructed in Proposition 5.2 of their paper
as a starting point for the efficient allocation that involves altruistic
donors. Indeed, given that|VA-B | ≥ |VB-A |, Ashlagi and Roth match
AB-O pairs in cycles(AB-O,O-A,A-AB). However, because we
are essentially making no assumptions regarding|VA| and|VB |, it
may be the (admittedly extreme) case that there are many (sayan
infinite supply) of A-donors, few B-donors, few O-donors, and a
large number of unmatched under-demanded pairs of type O-B and
B-AB. In that case we would rather have the A-donors donate to
A-AB pairs while creating cycles(AB-O,O-B,B-AB). Therefore,
we must match AB-O pairs onlyafter matching altruistic donors.



The presence of (even short) chains allows us to avoid a nega-
tive property of the efficient allocation constructed by Ashlagi and
Roth [5]: that it never matches O-AB pairs. These are, in a sense,
the “most” under-demanded pairs in that their candidates are hard-
est to match, while their donors are least capable of finding amatch.
In our allocation, AB-O pairs and O-donors that cannot participate
in 3-cycles can donate to O-AB pairs without affecting the size of
the matching. More precisely, if there are sufficiently manydonors
to fully match one of the setsVO-A andVA-AB , and one of the sets
VO-B andVB-AB , then an efficient allocation can match O-AB pairs.

Independent work by Ashlagi et al. [3] attempts to explain the
observed benefit of longer chains by considering a theoretical model
with highly sensitized patients. Specifically, the probability of tis-
sue type compatibility is allowed to decrease with the size of the
graphn. Among other results, it is shown that for anyk there ex-
ists a small enough probability of compatibility such that chains of
lengthk+1 are strictly better than chains of lengthk. However, to
even derive such a statement for chains of length 5 versus chains of
length 3, the probability must be as small asc/n for some constant
c, whereas intuitively this probability should be a constantthat does
not depend onn. Hence, despite the elegance of their results, the
assumptions underlying their model may be hard to justify.

5. EXPERIMENTAL VALIDATION
The theoretical results from Theorem 1 are strong in that they

limit the utility of chains to those of length 3 or fewer—as the graph
grows to infinity. In this section we study the disconnect between
that theorem and the real-world results from the recent UNOSkid-
ney match runs (Figures 1 and 2).

There are three potential reasons for this disconnect: (1) the the-
ory applies in the large, and the UNOS exchange is not yet large
enough for the theory to have taken hold, (2) the model that each
blood type compatible edge fails tissue type compatibilityindepen-
dently and with equal probability is a poor model of the (highly
sensitized) UNOS pool, and (3) the theory assumes all edges have
equal weight, while in the UNOS exchange, edges are weighted.

The discrepancy between the theory and the fielded results can-
not be explained solely by the fact that the theory model usesun-
weighted edges while the real UNOS data has edge weights. If that
were the main difference, we would see the curves in Figure 1 reach
their maxima at a chain cap of 3. This is not the case. So, we see
that even if all the weights were binary, long chains would produce
a significant benefit in practice. The difference can, in part, be at-
tributed to the highly structured and very small UNOS pool. This
is the product of the newness of the UNOS pilot program; as the
exchange grows, we expect the compatibility graph’s structure to
converge to one similar to our theoretical model.

In reality, the input graphG(n) cannot grow infinitely; specifi-
cally, in kidney paired donation, it has been estimated thatin steady
state the fully fielded nationwide exchange will have around10,000
pairs at any one time. In this section, we experimentally determine
just how large the candidate pool needs to be for the chain cappre-
scribed by Theorem 1 to apply.

The minimum size of this compatibility graph needed for the
theory to take hold depends on the probability distributionof blood
and HLA types in the candidate and altruist pools, the numberof
candidates in the graph, and the number of altruists. We willvary
both the number of candidates and altruists, but choose to focus
only on blood and HLA types representative of the US population
(which serves the current nationwide kidney exchange).

Here we generate candidate-donor pairs and altruists via the most
advanced and commonly used data generator for kidney exchange
today, by Saidman et al. [14]. This generator incorporates the blood

types from the ABO model discussed earlier. It also incorporates an
abstract model of tissue types to compute a type of score thatquan-
tifies the likelihood of a specific candidate being tissue type com-
patible with a random donor. In other words, this tissue typemodel
is more refined than assuming all blood type compatible edgesare
tissue type incompatible with equal probability.

5.1 Increasing the candidate pool size
In the first set of experiments, we explore the effect of a large

number ofcandidateson the efficacy of long chains. We hold the
number ofaltruistsconstant at 1, 5, or 10 for each experiment.

Figures 4, 5, and 6 show that larger pools match a higher per-
centage of candidates, leveling out at roughly 62% in compatibility
graphs with a couple hundred candidates. At a high level, this is a
strong argument for a national kidney exchange to replace the set of
smaller regional exchanges; see [11] for similar arguments. These
figures also make a case for the inclusion of chains in pools atboth
the regional and national level. Figure 5 shows that, for generated
pools of size 256, the optimal matching with a chain cap of 1 (i.e.,
altruists donating directly to the deceased waiting list, avoiding the
paired candidate pool entirely) matches nearly 4% fewer candidates
overall than matching with a chain cap of 3. The case is more dras-
tic as the number of altruists increases; for instance, Figure 6 shows
a 5% decrease on compatibility graphs of the same size. The effect
of altruists on the pool is discussed further in the next section.

From above, we can now ignore matchings that only include
chains of length 1 and 2; capping chains at either of these lev-
els would result in fewer candidates being matched. Figures7, 8,
and 9 show the expected number of extra transplants resulting from
matches incorporating chains of length 4 and 5, compared to only
considering chains of up to length 3. Clearly, the maximum number
of additional transplants offered by increasing the chain cap by 1 is
proportional to the number of altruists present in the graph. For
example, for a graph witha altruists, incorporating 5-chains can
provide a benefit of at most2a matches over incorporating at most
3-chains; similarly, increasing the cap from 3 to 4 results in at most
a extra matches. Figures 7 and 8 show that at pool sizes of 256 with
a = 1 anda = 5, the expected number of additional transplants
for either 4- or 5-chains is nil (over 100 generated compatibility
graphs). Figure 9 shows similar results while exemplifyinganother
behavior: as the number of altruists increases, the size of the pool
required so that limiting the mechanism to 3-chains is satisfactory
increases. This behavior is explored further in the next section.

Figures 8 and 9 initially show anincreasein the utility of longer
chains as the graph size moves from very small (e.g., 16 candidates)
to slightly larger (e.g., 32–64 candidates).3 This is a side effect of
the number of altruists present relative to the size of the pool. With
a high enough ratio of altruists to candidates, altruists can “flood”
the matching, an idea explored further in the next section.

All of the experiments validate the theory: there seems to clearly
be a pool size beyond which long chains do not help.

5.2 Increasing the number of altruists
In the previous subsection, we held the number of altruists con-

stant while increasing the size of the candidate pool. We nowex-
plore the opposite, allowing ever increasing numbers of altruists to
enter candidate pools of constant size.

As the number of altruists increases relative to the size of the
candidate pool, the expected number of candidates matched rises
to 100%, as shown in Figures 10, 11, and 12. This full flooding
of the pool to create a complete matching, while interesting, is not

3In Figure 9, the computational demands of this experiment pre-
cluded us from extending the dotted line past 128 candidates.
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Figure 4: Total percentage of candidates
matched as #candidates increases across
various chain caps, #altruists=1.
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Figure 5: Total percentage of candidates
matched as #candidates increases across
various chain caps, #altruists=5.
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Figure 6: Total percentage of candidates
matched as #candidates increases across
various chain caps, #altruists=10.
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Figure 7: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=1.
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Figure 8: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=5.
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Figure 9: Cardinality increase over 3-
chains for 4- and 5-chains, #altruists=10.

presently a realistic scenario; all three tested compatibility graph
sizes would require around 50% as many altruists as candidates in
the pool (Figure 12 has the x-axis cut short). In our experience with
UNOS, the number of altruists is typically around 5% the sizeof
the candidate pool. Increasing this number could feasibly change
as the exchange grows in size and publicity, paying special notice
to the ethical issues that arise in coercion of possible donors.

6. DYNAMIC KIDNEY EXCHANGE
In the paper so far, we have studied static models. We now dis-

cuss the dynamics of a kidney exchange running month to month.

6.1 Augmenting the model
We augment the model in several ways to make it capture the

nuances that have arisen in practice.
Dynamics. Most of the work in kidney exchange has focused on a
single-shot optimization on a static pool. This deviates from reality
in that matching should occurdynamically. In reality, candidates
arrive and depart from the pool. Even with dialysis, only 12%of
patients survive 10 years [18]; this gives us the monthly death rate
we use in our experiments. Timeliness in matching is clearlyim-
portant. Our experimental results, discussed later, perform match-
ing over 24 months using a changing kidney pool.

Some work in this area has been done already. Ünver [17] de-
rives an efficient mechanism in the dynamic setting for a simplified
model of kidney exchange that can be solved analytically. Awasthi
and Sandholm [6] apply the model discussed above to the dynamic
setting, using trajectory-based optimization to look intothe pos-
sible futures and then use optimization technology to determine
transplants for the current period, including chains.

Work by Gentry et al. [8] on simulated data and Ashlagi et al. [4]
on real-world data explores the trade-offs between two types of
chain execution polices. The first chain type is executed in its en-
tirety in one time period, with the leftover donor donating to the

waiting list. An alternative is to split long chains into segments
with intra-segment simultaneous transplants, but the segments exe-
cute one after another. The left over donor (akabridge donor) from
one segment then serves as a virtual altruist for the next segment.
These two types of chains perform differently under the presence
of renege rates—that is, when a bridge donor decides to leave the
pool before donating a kidney. However, no reliable quantification
of a renege rate exists due to the infancy of kidney exchanges.

While Gentry et al. [8] do not explicitly consider chain caps,
Ashlagi et al. [4] do; they experimentally show that longer (up to
length 6) chains can, in fact, help. Our work uses a similar model
with single-shot execution chains and, importantly, takesinto ac-
count the policies of the UNOS nationwide kidney exchange. As
we will show, this addition results in different matching behavior.
We now discuss these UNOS-specific additions to the model.
Individual crossmatch sensitivity. As exemplified in the real,
highly-sensitized UNOS candidate pool, candidates can have widely
varying susceptibility to incompatibilities in kidney donation. The
Saidman et al. model from the previous section has a rather realistic
view of virtual crossmatch failures, and we use that model here.

In addition, here we do (non-virtual) crossmatches for all the
planned transplants just before the transplant takes place, as in re-
ality. This is again done using the Saidman et al. [14] generator. It
provides for each candidate a probability that the candidate is tissue
type compatible with a random person. We use that probability to
draw crossmatch success versus failure. If the crossmatch fails, the
transplant cannot proceed. If it is part of a cycle, the cycledoes not
execute; the pairs in the cycle go back in the pool. The failededge
is permanently removed from the compatibility graphG(n).

Crossmatching has a significant effect on the size of the “real”
matching. Assume an optimal matching (pre-crossmatch) yields a
3-cycle. If any crossmatch fails between a candidate and poten-
tial donor, theentirecycle must be thrown away—since we cannot
force a donor to give a kidney if his accompany candidate doesnot
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Figure 10: Total percentage of can-
didates matched as #altruists increases
across various chain caps, #cands=32.
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Figure 11: Total percentage of can-
didates matched as #altruists increases
across various chain caps, #cands=64.
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Figure 12: Total percentage of can-
didates matched as #altruists increases
across various chain caps, #cands=128.

receive one. Even more drastic is the case of chains: if, for exam-
ple, a pre-crossmatch matching yields a 20-chain, any transplants
after the first crossmatch failure cannot be performed.

Because of this special case for chains, real-world exchanges
have enacted policies for the acceptance or rejection of chains based
on their length and the quality of the altruistic donor. O-type altru-
ists are highly valued, as they can (potentially) donate to any blood
type, so short chains enabled by O-type altruists should (poten-
tially) be rejected in favor of longer chains in the future. Our exper-
iments follow current UNOS policy which, along with some special
cases discussed below, states that (i) chains started by non-O-type
altruists are always executed, while (ii) chains triggeredby an O-
type altruist are executed only if they can be executed to length at
least 5 (before there is a crossmatch failure). We will experiment
with varying the value away from 5; we will call this parameter k.
Altruists are allowed choices.In the event that an O-type chain is
shorter than length 5, the UNOS policy allows for the altruist to de-
cide that the chain be executed anyway. This is due to the factthat
altruists do not want to stay in the candidate pool indefinitely, but
rather want to move on with their lives and other plans. In UNOS’s
experience running kidney exchange, altruists typically do not wish
to stay active in the pool for more than three months—insteadopt-
ing to donate directly to the deceased donor waiting list. While
exact data on this phenomenon are too sparse at the moment, our
experiments use the anecdotal rates (received through UNOS): 75%
probability of an altruist requesting execution of a short chain, and a
monthly altruist exit rate that corresponds to an expected presence
of two months in the pool for each altruist. Our model executes
each chain in a single time segment.

6.2 Experimental Results
We now present preliminary results simulating dynamic kidney

exchange under the model described above. Figure 13 shows the
expected increase in transplants when including chains over the
cycles-only approach. The x-axis describes the total number of
candidates available during at least one time period over the entire
simulation; between 15 and 20 candidates arrive every time period
and between 1 and 2 altruists arrive every time period. The initial
pool (i.e., the pool at timet = 0) is seeded with between 50 and
100 candidates and 5 altruists. These settings roughly mimic the
current state of the nationwide UNOS pilot program.

The results both remain true and (appear to) deviate from the
theory in a number of ways. The benefit of using chains is imme-
diately obvious; in all cases, even using only 2-chains increases the
total number of transplants by 20 or more. However, in this new
setting, chains of length at most 3 (at least for the tested pool sizes,
number of altruists, etc) donotprovide equivalent benefit to longer
chains. While 3-chains do provide a net gain over 2-chains, con-
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Figure 13: Expected improvement ofn-chains over 1-chains
(over 24 months).

sidering longer chains helps—sometimes by nearly 10 additional
transplants. This increase is surprising because, intuitively, longer
chains are less likely to be executed in full (and thus likelyto be
canceled by the UNOS policy) due to low crossmatch probability.
Not executing a chain is dangerous because altruists leave the pool
entirely if they remain unmatched for more than a few months.

The results above can be explained by considering the effectof
time on an evolving small-scale pool of candidates. Over time,
highly sensitized candidates will build up in the pool, since they are
often significantly harder to match—both because they have fewer
connected edges in the generated compatibility graph and because
they are more likely to fail during the crossmatch. Through the real-
world results detailed in Section 3, we have seen that the utility of
(long) chains increases tremendously in the presence of a small,
highly sensitized pool. In Figure 13, chains of length greater than
3 are able to serve highly sensitized candidates because they do not
need to “close” the chain, as is the case with a cycle.

Surprisingly, allowing the optimizer to use chains of up to length
5 is strictly worse than constraining it to chains of length at most
4 (while a cap of 4 is better than 3). This suggests that there is di-
minishing benefit to longer and longer chains, and at the sametime
there is increasing risk of crossmatch failure (and therebyaltruists
leaving and candidates dying) with increasing chain cap. The ex-
periments here suggest that in the dynamic setting with these pool
sizes (i.e., not in the very large), a chain cap of 4 is best.

We now expand our preliminary experiments to include the chain
execution policy from UNOS (see Section 6.1), and we will vary k
(between 1 and the chain cap). Intuitively, a higherk will prevent
“wasting” a valuable O-altruist on short chains, favoring waiting
for a longer, higher-scoring chain instead. Figure 14 showsthe
effect of varyingk as we increase the chain length cap. When con-
sidering only short chains, a higherk increases the total number of



transplants. In contrast, when chains of length 4 and 5 are consid-
ered, it appears better to reducek. The drop in overall utility from
allowing only long chains to execute is due to altruists’ propensity
to leave the pool; if an altruist is not used in an executed chain
within a few time period, he/she is likely to leave the pool (and
thus be “wasted” by going straight to the deceased donor waiting
list instead of saving some lives in the pool first).4
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Figure 14: Expected percentage of candidates matched with 1-
to 5-chains, varyingk in the UNOS chain execution policy.

7. CONCLUSIONS & FUTURE RESEARCH
In this paper, we considered altruist-initiated chains, a recent in-

novation in barter exchanges that has seen wide adoption in re-
gional and national kidney exchange, but has not been well un-
derstood. We described results gathered from the first nationwide
kidney exchange in the US that show, for relatively small, highly-
sensitized pools of candidates, the benefit of long chains. We then
showed that, in the large, the benefit from chains longer than3 be-
comes negligible (with high probability) on random compatibility
graphs drawn from distributions that mimic the real world popu-
lation. We supported these theoretical results by extensive experi-
ments using the state-of-the-art instance generator to allow us to ex-
periment on larger instances than exist in current kidney exchanges.
The theoretical results take hold in exchanges orders of magnitude
smaller than the expected steady-state of the nationwide kidney ex-
change; this provides evidence for considering only short chains in
the large, real-world exchanges we expect to see.

Finally, we experimented in the dynamic setting where the ex-
change clears every month. We included in the simulations all
the known (to us) considerations that have arisen through our work
with real kidney exchanges. Computational complexity precluded
experiments in the large for the dynamic setting, but in medium-
sized pools a chain cap of 4 was best (and strictly better than5). At
any given point in our largest dynamic simulations, 100–150candi-
dates were present in the pool—others had already been matched,
had died, or had not entered the simulation yet. We showed in
Section 5 that, at such a small size and with so many altruists, we
cannot expect 3-chains to suffice. We believe that, were the pool in-
creased to hundreds of new candidates per month (as is projected to
be the case in a fully fielded nationwide exchange), experiments in
a dynamic setting would yield results similar to the static setting—
with chains of length 3 sufficing.

Many avenues for future research arise from this work. Theo-
retical results in less abstract models would provide further insight

4Following the acceptance of this paper, UNOS removed the rule
that chains triggered by an O-type altruist are executed only if they
can be executed to length at least 5. Our experimental results were
the reason for this change in policy.

into the efficacy of chains in real world exchanges. Ongoing work
by Ashlagi et al. [3] is, to our knowledge, the only other pushin
this direction; they analyze chains in highly sensitized pools, but
under arguable assumptions. Furthermore, advances in clearing al-
gorithms are necessary to handle chains at even the moderatescale;
the current state of the art can clear only small candidate pools
with just a few altruists. Scaling to the expected size of thenation-
wide kidney exchange will require algorithmic and computational
advances that allow clearing pools orders of magnitude larger than
what can be solved today. Restricting attention to short chains may
be a promising avenue for tackling that complexity.
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