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ABSTRACT
My Ph.D thesis focuses on the study of solution concepts for
rational learning agents in extensive–form games in absence
of common knowledge; specifically, on the definition of so-
lution concepts, their search, analysis of static and dynamic
property, characterization of learning dynamics. Summarily,
my work is finalized to better understand how to integrate
more thoroughly game theory and machine learning.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence

General Terms
Algorithms, Economics

Keywords
Game Theory (cooperative and non-cooperative)

1. INTRODUCTION
Game theory provides the most elegant formal tools to

study strategic interaction situations. Many of these de-
scribe situations in which the assumption of common knowl-
edge holds (e.g. solution concepts like Nash equilibrium and
its refinements), but in real–world situations this assump-
tion is rarely verified. Thus to study these situations we
must resort to alternative methods in which each agent has
own beliefs and can learn from its observations.

The objective of my Ph.D. thesis is the theoretical and
algorithmic study of the behavior of rational agent with
extensive–form games. The work is motivated by the lack
of a thorough study in literature of these situations that are
common in real–world applications.

2. STATE OF THE ART
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2.1 Solution concepts
One of the most important solution concepts in game the-

ory is the Nash equilibrium (NE): it describes a strategy
profile in which each agent has no incentive to deviate uni-
laterally. In extensive–form games this notion of equilibrium
is not appropriate because it allows agents to play strategies
that in a real situation they would not play. There are some
important refinements of NE. The most common is the con-
cept of subgame perfect equilibrium (SPE) that constrains a
strategy profile to be an NE in every subgame [5], where a
subgame is a portion of the game tree well defined. The con-
cept of SPE is satisfactory with perfect–information games,
while it is not when information is imperfect. The “natural”
extension of the SPE to situations with imperfect informa-
tion is the sequential equilibrium (SE) [10]. An SE is defined
as a pair (σ, σ̂), where σ are the strategies of the agents and
σ̂ are the agents’ beliefs over the opponents strategies, such
that strategies σ are sequentially rational to the beliefs σ̂

(in the sense of backward induction) and the beliefs σ̂ are
consistent to the strategies σ according to the notion of con-
sistency of Kreps and Wilson. This notion of consistency
requires essentially that the beliefs are correct everywhere
in the game tree. The concept of SE is a refinement of the
concept of SPE, the SPEs containing the SEs.

The previous concepts are based on assumption of com-
mon knowledge between agents that rarely is verify in the
real world. For this reason the concept of self–confirming
equilibrium (SCE) that relaxes the NE, capturing interest-
ing settings in which information is not common, was intro-
duced. Similarly to an SE, an SCE is defined as a pair (σ, σ̂)
where σ are best response to the beliefs σ̂. Differently, be-
liefs σ̂ can be wrong off the equilibrium path (instead they
must be correct/confirmed on the equilibrium path). Obvi-
ously, every NE is an SCE (with correct beliefs), while an
NE may be not an SCE.

2.2 Learning dynamics
Without the assumption of common knowledge, agents

can only learn to play the game by trials and errors. The
most common learning algorithm is Q–learning that can be
utilized to study the agents’ behavior in a game. In some sit-
uations, learning algorithms are proved to converge to some
specific solution concept. However, also in these cases learn-
ing dynamics may be long and it could be more interesting
to characterize the dynamics than the steady state. Evo-
lutionary game theory [9] provides models (like replicator



dynamics) to study steady states from a dynamic point of
view to understand the features of these states and their
basins of attraction. However, the characterization of the
learning dynamics when there are multiple agents that re-
peatedly match is an open issue.

2.3 Equilibrium computation
Game theory and microeconomics provide only models

and solution concepts, but they do not provide computa-
tional tools to deal with games. The development of these
tools is an interesting topic, with the name of equilibrium
computation, in computer science.

A number of computational results are known on the NE:
computing an exact NE [3] and approximating it [2] are
PPAD–complete; PPAD is inNP , it does not includeNP–
complete problems unlessNP = co–NP , and it is not known
whether PPAD is in P , but it is commonly believed that
it is not; instead, the problem to verify whether or not a
solution is a NE is in P .

A number of works deal with the problem to compute a
NE with general–sum strategic–form games (especially with
two agents), e.g., [1, 11, 13, 14], and with the problem to
solve large zero–sum extensive–form games, e.g., [8]. An
SPE can be easily found by applying backward induction [5].

The computation of an SE (and of an SPE) can be tackled
by a simple variation of the Lemke’s algorithm by introduc-
ing a specific lexicographic perturbation [12], this puts the
problem to find an SE in the PPAD class. The problems
of verifying a SE with an arbitrary number of agents and a
QPE with two agents are in P [6].

The unique result on the computability of an SCE is dis-
cussed in [7], where the authors show that the problem to
compute an SCE can be formulated as an MILP.

3. THE THESIS OBJECTIVE
The objective of my Ph.D. thesis is the theoretical and

computational study of solution concepts and learning dy-
namics with extensive–form games with two or more agents
and without the common knowledge assumption.

In particular I focus on:

● the study of the relation between solution concepts
and learning dynamics: during the learning phase the
agents can play strategy profiles that can be described
in terms of solution concepts;

● the study of the complexity of the verification problem,
i.e. given a strategy profile, verify whether or not it is a
solution concept: in a learning dynamic can be observe
strategies for finite time, it is important to know which
equilibrium (even temporarily) they tend to;

● the study of the complexity of the search problem, i.e.
given a representation of game (in general extensive–
form) search a solution concept: during a learning pro-
cess it is important to know where the agents could
move to converge;

● the search for and characterization of the regions that
containing the points that condition the learning dy-
namics;

● the study of the solution concepts under varying of the
initial assumptions (e.g. epistemic–based games) or in
asymmetric situations in which agents have different
information about each other.

4. PROGRESS
I focused on the study of solution concepts in an extensive–

form game that is repeatedly played by different individuals
without common knowledge [4]. More precisely, for each
agent (representing a role), there is a population (finite or
infinite) of individuals and, at each repetition of the game,
one individual is drawn from each population and these are
matched and then play the game. I derived different math-
ematical formulations to find finite or infinite heterogeneous
self–confirming equilibrium (HSCE), I proved relations be-
tween different types of self–confirming equilibria, I defined
the region (in the space of utilities) of HSCE and I started to
study equilibria in terms of attractors, saddles and repellers.
At the current state I analyzed these features in two–players
games, but, as next step of my work, I would like extend
these concepts to multi–player (more than two) games and I
will deeply study the characterization of equilibria in terms
of dynamics with the aid of machine learning algorithms.
I planned to study computational complexity to define the
classes of problems of search an verify of equilibria.
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