
Agent Reasoning for Norm Compliance

A Semantic Approach

M. Birna van Riemsdijk
∗

Delft University of Technology
Delft, The Netherlands

m.b.vanriemsdijk@tudelft.nl
Louise A. Dennis

University of Liverpool
Liverpool, UK

l.a.dennis@liverpool.ac.uk

Michael Fisher
University of Liverpool

Liverpool, UK
mfisher@liverpool.ac.uk

Koen V. Hindriks
Delft University of Technology

Delft, The Netherlands
k.v.hindriks@tudelft.nl

ABSTRACT
A system of autonomous agents may exhibit undesirable or ineffec-
tive behavior if no form of regulation is imposed. Norms, describ-
ing how agents should ideally behave, can be used to address this
issue if agents are able to reason about norms and adapt their behav-
ior to comply with them (if they choose to do so). Assuming that
which norms will have to be followed is unknown at design time,
it is not possible to pre-program agents such that their behavior is
norm compliant. Instead, we need a generic execution mechanism
that allows agents to adapt their behavior at run-time, which is what
we propose in this paper. The execution mechanism is defined on
top of an abstract agent decision making mechanism. This is done
by allowing the execution of actions by the agent decision mak-
ing mechanism only if these are not forbidden according to norms,
as well as triggering the execution of actions if this is required by
norms. We specify norms using Linear Temporal Logic and define
the operational semantics of the execution mechanism using tech-
niques from executable temporal logic. We formally analyze prop-
erties of the execution mechanism, including norm compliance.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents, languages and structures; I.2.5 [Artificial In-
telligence]: Programming Languages and Software; F.3.3 [Logics
and Meaning of Programs]: Studies of Program Constructs; D.3.3
[Programming Languages]: Language Constructs and Features

Keywords
Agent Programming; Normative Systems; Formal Semantics

1. INTRODUCTION
A system of autonomous agents may exhibit undesirable or inef-

fective behavior if no form of regulation is imposed. An important

∗M. Birna van Riemsdijk was partly supported by the Dutch na-
tional programme COMMIT.

Appears in: Proceedings of the 12th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2013), Ito,
Jonker, Gini, and Shehory (eds.), May, 6–10, 2013, Saint Paul, Min-
nesota, USA.
Copyright © 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

line of research that addresses this issue is work on normative sys-
tems, in which norms govern the behavior of a multi-agent system
(MAS). Norms describe how agents should ideally behave. The
idea is that if agents enter a social context that is governed by a
set of norms, they are able to recognize the norms, decide whether
they want to follow them, and if they decide to do so, adapt their
behavior accordingly (see, e.g., [15]). In this paper we are con-
cerned with the last of these steps, i.e., assuming that an agent has
decided to follow a set of norms, how can it generate behavior that
complies with these norms.

If it is not known at design time exactly which sets of norms an
agent may encounter, it is not feasible to pre-program the required
behavior for each of the possible combinations of norms. Instead,
we need a generic execution mechanism that allows agents to adapt
their behavior at run-time, which is what we propose in this paper.

One way of defining such an execution mechanism is through a
planning approach [16] where a plan for achieving the agent’s goals
is created from scratch, taking into account norms that should be
satisfied. In this paper we take a different approach, and assume
that an agent already has a selection of pre-existing capabilities,
e.g., being able to pick up blocks, move around, communicate in-
formation and so forth, and a decision making mechanism which
enables it to reason about how to use its capabilities to achieve its
goals. The generic execution mechanism that allows the agent to
adapt its behavior is then defined on top of these pre-existing ca-
pabilities and (abstract) agent decision making mechanism. The
advantage of this approach is that it can be added on top of a vari-
ety of agent decision mechanisms.

As an example let us consider an autonomous robot intended for
use in emergency search and rescue situations. We can expect this
robot to be deployed in a variety of situations as part of a mix-
ture of organisational structures; structures which may well have
been assembled rapidly and may well change frequently as events
progress. As such, while the robot’s basic capabilities (e.g., search-
ing buildings, removing rubble, etc.) will remain unchanged they
will need to fit within different organisational protocols. For in-
stance in some situations a robot may be expected to perform some
tasks (e.g. moving rubble) only under supervision from a human;
in other situations it may be trusted to complete all its tasks entirely
autonomously. It is vital, therefore, that the robot can flexibly in-
corporate different normative rules into its reasoning.

So for instance, such a robot’s basic behaviour may be to search
all rooms in a building exhaustively, proceeding from room to room
based upon its internal beliefs about which rooms have been sur-

499



veyed. Now suppose this robot is placed within an organisational
structure where groups of agents are assigned to each building and
work together cooperatively to search it. A key to this exploration
happening efficiently will be the agents communicating with each
other to prevent individual rooms being visited by more than one
robot. A typical norm for such a group might be that the robot al-
ways communicates that a room has been surveyed before it moves
to another room. It is important to note that such a norm should
not be hard-wired into the robot in advance since, the next time it
is deployed, the organisational structure may be different. Also,
we should reasonably expect such norms not only to prohibit the
execution of actions but also to insist that actions not normally oc-
curring in the agent’s plans to take place (such as communicating
information, requesting assistance, etc.).

Norms may exist in complicated relationships with an agent’s
pre-existing capabilities and decision making mechanism. There-
fore treating them simply as additional beliefs, goals, or rules that
the agent may adopt at run-time is insufficient, as it will be diffi-
cult (if not impossible) to do it in such a way that norm compliant
behavior is generated. In order to investigate to what extent our ex-
ecution mechanism can indeed guarantee norm compliant behavior,
we formally specify the semantics of the execution mechanism.

To be more specific, we take the following approach in this pa-
per. We describe an abstract agent semantics that is defined on the
basis of a transition function for basic actions and a decision mech-
anism that chooses which of the enabled actions to execute in order
to reach the agent’s goals (Section 3). Then we define a language
for expressing norms, which is essentially the “next-fragment” of
Linear Temporal Logic [8] (Section 4). In this way we can use tech-
niques from executable temporal logic [11] to define a normative
agent semantics on top of the abstract agent semantics (Section 5).
This semantics both prevents the execution of actions that would be
executed according to the agent decision mechanism if this is for-
bidden according to norms, and triggers additional actions whose
execution is obliged by norms. We analyze properties of these nor-
mative agent semantics in Section 6. We emphasize that in this
paper we are concerned with the generation of compliant behavior.
That is, we do not address reasoning about which norm to violate if
no compliant behavior can be produced. Finally, we provide con-
clusions in Section 7, having assessed related work in Section 2.

2. RELATED WORK
Significant work has been reported at the level of the specifica-

tion of normative systems and agent organizations (e.g., [9, 4, 7, 2,
14]). However, much less work has been done at the level of indi-
vidual agents and how these can reason about and adapt to norms
at run-time.

Meneguzzi and Luck [15] have proposed a technique for extend-
ing BDI agent languages, enabling them to adapt their behaviour
at run-time in response to newly accepted norms. They do this by
creating new plans to comply with obligations and suppressing the
execution of existing plans that violate prohibitions. The mech-
anism is implemented in AgentSpeak(L) [5]. In contrast with the
work reported here, no formal semantics is defined in [15] and, con-
sequently, no properties are proved concerning the extent to which
the mechanisms indeed yield compliant behavior. They also take a
different approach to defining the mechanism by referring directly
to BDI programming concepts such as plans. Instead, we define
a novel execution mechanism on top of an abstract agent decision
making mechanism. Moreover, we take a different representation
of norms that is based on linear temporal logic, which allows us to
use techniques from executable temporal logic to enhance the agent
execution mechanism.

In [16], a framework and an implementation for norm-oriented
planning is provided on top of STRIPS. It takes into consideration
the operationalisation of norms during the plan generation phase,
aiming for the generation of plans that both take into account the
agent’s utility function over actions as well as norms that should be
adhered to. Thus the generation of norm compliant behavior is in-
tegrated with the agent’s planning mechanism. The main difference
with our work is that we define a generic execution mechanism on
top of an abstract agent decision making mechanism. This allows
it to be used with any decision making mechanism that adheres to
the required form, including those defined by agent programming
frameworks. Due to this different approach, the technical realiza-
tion of the execution mechanism is also different from the planning
approach used in [16].

In [1] the agent programming language 2APL is extended to al-
low reasoning about obligations and prohibitions to achieve a tar-
get state before a deadline. In that work the focus is on finding
an appropriate scheduling of plans such that desired states can be
achieved before their deadlines. In [1], an existing agent program-
ming language is extended to allow reasoning about norms, rather
than defining a generic execution mechanism as we do. They use
a different norm language which focuses on achieving/prohibiting
states before a deadline, and not a general language based on lin-
ear temporal logic to express which actions should and should not
be executed. Consequently their mechanism for reasoning about
norms is based on a scheduling algorithm rather than executable
temporal logic as it is in our framework.

3. ABSTRACT AGENT SEMANTICS
In this section, we provide an abstract agent semantics. It de-

fines a transition function for basic actions and a decision mech-
anism that chooses which of the enabled actions (according to the
transition function) may be executed in a certain state. Typically
the decision mechanism will be designed to assist in achieving the
agent’s goals. The mechanism for normative reasoning will be de-
fined on top of this semantics.

We assume two mutually disjoint sets, namely a set of propo-
sitional atoms At with typical element p, and a set of actions Act
with typical element a. We assume a language of propositional
logic LAt with typical element φ defined over At, with>,⊥ ∈ LAt

denoting the true and false sentence, respectively.
We assume a set of abstract agent states S. A partial transition

function T (a, s) for basic actions, takes an action a ∈ Act and
a state s ∈ S and yields another state s′ ∈ S that results from
executing a in s. If the action cannot be executed in s, the function
is undefined.

We abstract from the external environment in which the agent
operates for reasons of simplicity, assuming that the agent state ac-
curately represents the state of the environment. Formulae φ ∈ LAt

express properties of the agent’s environment. We assume an en-
tailment relation s |=LAt φ, which defines when (the agent believes
that) φ holds in the environment.

A state s may, for example, describe the mental states of agents
as in cognitive agent programming languages such as
Jason/AgentSpeak [5], GOAL [13] or 2APL [6]. Then φ holds
if, and only if, it follows from the belief base of the mental state
(which is updated in each reasoning cycle with the percepts from
the environment).

We define an abstract agent decision mechanism as follows. Let
Dec(Act, S, T ) be a set of transitions s

a−→ s′ for which
T (a, s) = s′. This set of transitions defines which actions may
be executed in which state according to the agent’s decision mech-
anism. This is a subset of the transitions that can occur according

500



to T . An agent program can be used to define such a mechanism.
The abstract agent semantics for an initial state s is then defined

as usual as the set of finite or infinite traces (sequences of transi-
tions) starting in s.

DEFINITION 1. (Abstract Agent Semantics) A trace in the agent
semantics, typically denoted by t, is a finite or infinite sequence of
agent states interleaved with actions s0, a0, s1, a1, s2, . . . such that
for each i (except the final state in case of a finite trace) it holds that
si

a−→ si+1 is in the set of transitions Dec(Act, S, T ), and if t is
a finite sequence with final state si then si 6

ai−→, i.e., there is no
ai, si+1 such that si

a−→ si+1.
The semantics S(s) of an agent with initial state s is the set of all

traces starting in s.

4. LANGUAGE OF NORMS
Various languages for expressing norms have been proposed in

the literature, and one has to choose one when defining an execu-
tion mechanism for generating norm-compliant behavior. In this
paper we use a general Linear Temporal Logic (LTL) for express-
ing norms. The idea is that agents should exhibit behavior that
complies with the temporal logic formulae.

We can express the norm from the example introduced in Section
1, namely

“agents have to notify the other searchers that the room
is surveyed before going to another room”

in LTL as follows (since we work in a propositional setting, the
variables should be taken as abbreviations of their respective in-
stantiations):

2(at(Me,Room) ∧ surveyed(Room)→
(done(send(Searcher, surveyed(Room))) before

done(goTo(NewRoom)))) (1)

In LTL, the intuition is that

2(φ) means that φ should hold in each state of the trace, and

φ before φ′ means that φ should hold before φ′ holds.

The formula φ before φ′ can be defined in terms of the ψ until ψ′

operator - which means that ψ should hold until ψ′ becomes true
(where ψ′ must become true at some point) - by ¬(¬φ until φ′).

It would be tempting to communicate this norm to the agents ei-
ther as a goal (to inform all robots that rooms have been surveyed)
or as a new rule (if you have surveyed a room, then tell the other
searchers). However neither of these adequately capture the norm
semantically, and both raise practical problems in typical rational
agent programming languages. In particular, few agent program-
ming languages permit complex temporal goals and so giving a
robot the goal of informing other agents about some action does
not guarantee this will happen in a timely fashion. It will be de-
pendent upon the details of goal selection and discharge within the
agent. Similarly we assume the agent already has a rule for explor-
ing the building, which includes regularly leaving rooms and so if
the goTo(NewRoom) action is invoked by this other rule it is un-
likely that the rule involving communication will be selected. So
we need to provide a mechanism by which a robot can reason about
norms and, assuming it wishes to do so, obey them even when these
norms are going to interact with its pre-existing goals and plans.

We use LTL for specifying norms since this is a very general
language for specifying the desired behavior of executions. It can

be used both to express what should not be done (prohibitions) as
well as what should be done (obligations). We have already used
LTL for specifying norms in the context of the MOISE organiza-
tional modelling language [17]. Using LTL facilitates the use of
techniques from executable temporal logic [12, 11] to define a nor-
mative agent semantics. The idea of executable temporal logic is
to execute a formal temporal logic specification by building a con-
crete model for the specification. This corresponds to our aim of
generating behavior that complies with the norms specified in tem-
poral logic. The challenge is to define how such model building
can be combined with an existing agent decision mechanism into a
new execution mechanism.

To facilitate executing a temporal logic specification, in [10]
a normal form for temporal logic called Separated Normal Form
(SNF) is introduced. SNF has been used as the basis for the lan-
guage METATEM [11, 12], as well as for contemporary temporal
resolution provers, and essentially provides a concise clausal form
for temporal formulae. SNF facilitates the development of exe-
cution mechanisms for temporal logic, as it comprises the key ele-
ments required for temporal descriptions of dynamic systems: rules
that constrain the current state of the system (present time rules),
rules that define what the system can do next (step rules) and what it
must do at some time in the future (sometime rules). Any LTL for-
mula can be transformed into an equivalent set of SNF rules [10].
Because of its suitability for operationalization, we choose to use
SNF as the basis for specifying norm-aware agents.

To provide an intuition about SNF, let us begin with an abstracted
version of the formula (1) above

2(φ→ (done(a1) before done(a2)))

where φ ∈ LAt refers to the environment state and done(a1),
done(a2) express that actions a1 and a2 have been executed. In
order to make a clear distinction between actions and other propo-
sitional atoms, we write done(a) rather than a (with a ∈ Act).
Using the translation algorithm of [10], we obtain the following
SNF rules from this LTL formula:

φ⇒ ¬done(a2)
φ⇒ (w ∨ done(a1))

}
present time rules

w ⇒©(¬done(a2))
w ⇒©(w ∨ done(a1))

}
step rules

The present time rules informally specify that if the left-hand side
(lhs) of the rule holds in a state, then the right-hand side (rhs) must
also hold in that state. Step rules informally specify that if the lhs of
the rule holds in a state, then the next state must satisfy the formula
after the© operator. A third type of SNF rule is the sometime rule,
which specifies that if the lhs holds, the rhs must hold at some time
in the future.

In the translation process, an auxiliary atom w is introduced
which can be read as ‘waiting’. These atoms have a special sta-
tus as they do not refer to the environment state as atoms in At,
but rather are introduced for technical reasons in order to facilitate
model building for the temporal formula. The way this is reflected
in the normative semantics is explained in section 5. We use Ataux

to denote the set of auxiliary atoms, and it is important to note that a
new atom is generated whenever we translate away a more complex
temporal formula, such as ‘before’.

In this paper we focus only on present time and step rules, i.e., on
the “next-fragment” of LTL. Moreover, we focus on rules that pro-
hibit or oblige the execution of actions, rather than achievement of
a state. This means that on the rhs of rules we refer to actions (and
auxiliary atoms) only. This is done for reasons of simplicity, while

501



at the same time this fragment is expressive enough to model rele-
vant norms as illustrated by the example. Reasoning about achieve-
ment of a state is more complex as it may involve the execution of
multiple actions which are, in turn, constrained by norms. SNF
rules have conjunctions of literals on their lhs and disjunctions of
literals on their rhs. We define lit(At) to be the set of literals over
the set of atoms At, i.e., the atoms or their negation.

We define present time rules as follows. The lhs of present time
rules consists of a conjunction of literals from At and Act, and the
rhs consists of a disjunction of atoms from Ataux. The decision to
allow only a conjunction of literals from At rather than an arbitrary
formula φ ∈ LAt on the lhs does not restrict expressiveness. A for-
mula φ ∈ LAt can be translated to disjunctive normal form. Each
of the disjuncts can then be translated to a separate present time
rule with the disjunct on the lhs.

The choice to separate literals from different sets in the lhs and
rhs does not affect the expressivity of present time rules, as, e.g.,
p ∧ q ⇒ w ∨ v is equivalent to p ∧ ¬w ⇒ ¬q ∨ v. That is,
literals can be moved freely between the lhs and rhs. We choose to
separate the literals for technical convenience. By requiring literals
from At and Act to be on the lhs, the applicable present time rules
can be determined by evaluating the lhs, and they can be applied by
considering the auxiliary atoms on the rhs (see below for details).

DEFINITION 2. (Present Time Rules) A present time rule has
the form

∧
l⇒

∨
l′ where l ∈ lit(At ∪ Act) and l′ ∈ Ataux.

We define the lhs of step rules to consist of a conjunction of liter-
als from At and Act, and atoms from Ataux, and the rhs to consist of
a disjunction of literals from Act and atoms from Ataux. The trans-
lation algorithm from [10] is such that no negative auxiliary atoms
will occur on the lhs or rhs. The step rules are used to specify which
actions should, or should not, be executed in a state, depending on
what holds in that state. Thus the lhs contains atoms that refer to
properties of a state, and the rhs contains atoms referring to actions.
In addition, the rhs may include auxiliary atoms to allow deferring
an action, as in the example above. The rhs does not include atoms
from At, as we focus on rules that prohibit or oblige the execution
of actions rather than achievement of a certain state.

DEFINITION 3. (Step Rules) A step rule has the form∧
l⇒©(

∨
l′) where l ∈ lit(At∪Act)∪Ataux and l′ ∈ lit(Act)∪

Ataux.

5. NORMATIVE AGENT SEMANTICS
In this section, we define a normative agent semantics on top of

the agent decision mechanism defined by Dec(Act, S, T ), with the
aim of generating behavior that complies with norms expressed as
present time and step rules.

For this, we extend agent states in two ways, yielding norma-
tive agent states (called normative states from now on for brevity).
First, we add the action that has just been executed to the state. We
need this to define the applicability of present time and step rules
in a state. Second, we add auxiliary atoms to the state. Normative
states, typically denoted by n, thus take the form 〈s, a, aux〉, where
s ∈ S, a ∈ Act, and aux ⊆ Ataux.

We assume that normative agents can directly reference norms
that they have decided to adhere to, e.g., because they are able to
represent them internally. We assume that these norms are repre-
sented via a set of normative rules N , consisting of present time
and step rules as specified in Definitions 2 and 3.

In order to define the normative semantics, we need to define
when norms, represented as present time and step rules, are appli-
cable in a normative state. This is the case in a normative state

n = 〈s, a, aux〉 if a rule’s lhs holds in that state, expressed as
n |=

∧
l. The formula ϕ =

∧
l holds in this extended state if,

and only if, (i) all literals containing atoms from At in ϕ follow
from s (according to entailment relation |=LAt introduced above),
(ii) all positive literals from Act in ϕ are equal to a, and all negative
literals containing actions from Act in ϕ are unequal to a, and (iii)
all atoms from Ataux in ϕ are contained in aux.

DEFINITION 4. (Applicability of Present Time and Step Rules)
We say that a present time rule r :

∧
l ⇒

∨
l′ or step rule r′ :∧

l ⇒ ©(
∨
l′) is applicable in a normative state n iff n |=

∧
l.

We denote this as applicable(r, n).

If norms are applicable, they may affect the choice of action of
the agent. The semantics needs to be defined such that transitions
are generated that comply with the (applicable) norms, i.e., that
make the rhs of the applicable norms true (from one state to the
next for step rules, and for each state for present time rules).

The basic idea for generating such a transition is taken from the
METATEM [3, 11] execution semantics. Since the rhs of present
time and step rules consist of a disjunction of literals, these can
be satisfied by making one of these literals true. For example, in
order to satisfy (w1 ∨ w2) and (w3 ∨ w4), one needs to satisfy
(w1 ∧w3) or (w1 ∧w4) or (w2 ∧w3) or (w2 ∧w4). Each of these
conjunctions of literals represents a choice for the agent that would
allow it to generate a transition that complies with norms. Thus we
call this set of conjunctions the normative choices.

Below we present a formalization of the set of normative choices
for a set of norms N and a transition from normative state n to n′,
denoted as NChoices(N,n, n′). We will use the formalisation to
generate the set of auxilliary literals that may appear in n′. In-
tuitively NChoices(N,n, n′) captures all the auxilliary and action
literals that can appear in n′ as dictated by the present time rules ap-
plied to n′ and the step rules applied to n. At this point we make no
assumption that n itself complies with our norms; we are interested
only in the compliance of the ‘new’ state n′. The formalization
takes the rhs of step rules applicable in n and present time rules
that are applicable in n′. This set of disjunctions is transformed
to a set of conjunctions of literals as sketched above. From the re-
sulting set of conjunctions, we take only those that are satisfiable
in n′. For example, if a conjunct expresses that action a should be
executed and the normative state n′ contains a different action, the
conjunct is not satisfiable in n′.

The set of normative choices is thus defined with respect to a
given transition (n and n′ are taken as parameters), i.e., we use
the set of normative choices to check whether a given transition is
compatible with one of the possible normative choices. The only
exception is the auxiliary atoms in n′. In the definition, all elements
of n and n′ are used, except the auxiliary atoms of n′: only the
check for applicability of present time rules uses n′, and present
time rules do not have auxiliary atoms on their lhs. The definition
of normative choices is thus independent of the auxiliary atoms in
n′. The generation of appropriate auxiliary atoms for n′ is taken
care of in the transition rules that follow.

DEFINITION 5. (Normative Choices) Let N be a set of nor-
mative rules and let n, n′ be normative states. Let PTR(N) and
SR(N) be the sets of present time and step rules ofN , respectively.
We use rhs(r) to denote the disjunction of literals in the rhs of rule
r. We then define NChoices(N,n, n′) as

sat(CNF2DNF({rhs(r) | (r ∈ SR(N), applicable(r,n)) or

(r ∈ PTR(N), applicable(r,n’))}), n′)

502



where CNF2DNF transforms a set of disjunctions to an equivalent
set of conjunctions (where the set {>} is returned in case the set of
disjunctions is empty), and sat(C, n′) deletes those conjuncts from
C that are not satisfiable in n′, i.e., those that contain a positive
action literal different from the action of n′, a negative action literal
containing the action of n′, and those that are inconsistent.

It is important to note that if NChoices(N,n, n′) = ∅ (which can
only occur if sat removes all conjunctions), there are no norm com-
pliant ways of making the transition from n to n′. Moreover, if
there are no applicable present time or step rules, it means that the
agent is not constrained by norms in this transition. We return {>}
in this case (note that we should not return ∅, as this would mean
precisely the opposite, namely that there are no norm compliant
ways to make the transition). Definition 5 is such that no normative
choice in NChoices(N,n, n′) will contain more than one positive
action literal, as this would make it unsatisfiable in n′.

We now define two transition rules that formalize the normative
agent semantics. The first rule is for executing an action that can
be taken according to the agent decision mechanism. This action
selection is constrained by norms, as only actions may be executed
that are not forbidden according to norms.

The second transition rule is for triggering action execution ac-
cording to step rules. This concerns actions that the agent may
not have taken according to its decision mechanism, but which it
is obligated to take by its norms as expressed by step rules. This
does not necessarily mean that the action has to be executed at that
moment. In the example norm from Section 4, if w holds in a nor-
mative state then both step rules are applicable. This would allow
the agent to do any action other than a2, e.g., some action a3. The
semantics should however also allow the agent to select action a1
in this case, as it will have to be executed at some point (that is,
if the agent eventually wants to execute a2). The second transition
rule does precisely this: allowing the execution of actions that are
(eventually) required by step rules, but that would not (necessarily)
be executed according to the agent decision mechanism.

We formally define the first transition rule, action semantics con-
strained by norms, as follows. A transition can be generated from
a normative state n = 〈s, a, aux〉 with action a′ if there is a tran-
sition for action a′ from s to s′ in the agent decision mechanism,
and there is a normative choice that is compatible with this action.
We say that a normative choice c ∈ NChoices(N,n, n′) is com-
patible with action a′, denoted as compatible(c, a′), if and only if
c contains no positive action literals, or c contains a single positive
action literal equal to a′. The next normative state is of the form
〈s′, a′, aux′〉, where aux′ = aux(c), which denotes the atoms l
from conjunct c such that l ∈ Ataux. In this way the auxiliary atoms
for the next normative state are generated to comply with norms.1

DEFINITION 6. (Action Semantics Constrained by Norms) Let
n = 〈s, a, aux〉 and n′ = 〈s′, a′, ∅〉. Then the transition rule for
execution of actions constrained by norms, is defined as follows.

s
a′
−→ s′ ∈ Dec(Act, S, T )

c ∈ NChoices(N,n, n′) compatible(c, a′) aux(c) = aux′

n
a′
−→ 〈s′, a′, aux′〉

Note that compatible(>, a) for all actions a as > does not contain
positive action literals.
1Note that we generate the set of choices, NChoices(N,n, n′), using a nor-
mative state n′ in which the set of auxilliary atoms is empty, this guarantees
the maximal set of choices for norms N , state n, and action a′. We define
the semantics in this way to bootstrap generation of the next normative state,
who’s auxiliary atoms are derived from one of the normative choices.

The second transition rule, step rule semantics for triggering ac-
tion execution, is defined as follows. A transition can be generated
from a normative state n = 〈s, a, aux〉 with action a′ if there is
a step rule in which a′ occurs positively in its rhs and which is
applicable in n, and a′ is enabled in n according to the transition
function for actions, and there is a normative choice that is com-
patible with a′. Then, similarly to the first transition rule, the next
normative state is of the form 〈s′, a′, aux′〉, where aux′ = aux(c).

DEFINITION 7. (Step Rule Semantics for Triggering Action Ex-
ecution) Let n = 〈s, a, aux〉 and n′ = 〈s′, a′, ∅〉. Let r :

∧
l ⇒

©(
∨
l′) be a step rule. In order to ensure satisfaction of this step

rule over a transition, the agent can execute one of the actions
a0, . . . , an that occur positively in

∨
l′, denoted by a ∈

∨
l′. This

is modelled in the following transition rule.

n |=
∧
l a′ ∈

∨
l′ T (a′, s) = s′

c ∈ NChoices(N,n, n′) compatible(c, a′) aux(c) = aux′

n
a′
−→ 〈s′, a′, aux′〉

The transition relation a−→ is the smallest relation induced by the
two transition rules defined above. The normative agent semantics
for an initial state s and set of norms N is then the set of finite or
infinite traces (sequences of transitions) generated by the transition
rules above and starting in a normative state that has s as the first
element. These initial states have to comply with present time rules
in order to ensure that the initial state is norm compliant.

DEFINITION 8. (Normative Agent Semantics) A trace in the
normative transition system (under set of norms N ), typically de-
noted by t and referred to as a normative trace, is a finite or infinite
sequence of normative states interleaved with actions
n0, a0, n1, a1, n2, . . . such that for each i (except the final state
in case of a finite trace) the transition ni

ai−→ ni+1 can be derived
using a transition rule of Definition 6 or 7. If t is a finite sequence
with final state ni then ni 6

ai−→.
Let NChoices(N,n) be a variant of NChoices(N,n, n′) where

only present time rules are considered and their applicability is
with respect to n. Let n = 〈s, ε, ∅〉 and NChoices(N,n) = C. The
normative semantics SN (s) of an agent starting in state s is unde-
fined if C = ∅. Otherwise, we define the set of initial normative
states of the agent as Init(s) = {〈s, ε, aux(c)〉 | c ∈ C} (where ε
denotes the empty action). Then SN (s) is the set of all traces under
set of norms N starting in a normative state n0 ∈ Init(s).

COROLLARY 1. If N is empty (or if none of the norms are
ever applicable), then the set of traces generated by the transition
rules are equivalent to those of the original agent program modulo
extension of state to normative states.

6. PROPERTIES
In this section we investigate properties of the normative seman-

tics. We start with a weak definition of what it is for a trace to
satisfy a set of norms and show that this holds true of the execution
mechanism we have defined. We then move on to examine stronger
definitions that capture the idea that the trace has not been halted
because further action is forbidden by the norms.

6.1 Weak Norm Compliance
In order to investigate norm compliance, we first need to make

precise when a state and transition satisfy present time and step
rules, respectively. Definition 9 defines satisfaction of present time
rules in a normative state. A present time rule is satisfied in a state

503



if it holds that if the lhs holds in that state, then the rhs holds in that
state. We lift this definition to sets of present time rules as expected.

DEFINITION 9. (Satisfaction of Present Time Rules) Let n be
a normative state and let N be a set of norms. We define that a
present time rule r :

∧
l ⇒

∨
l′ is satisfied in n iff it holds that if

n |=
∧
l then n |=

∨
l′. We define that SatPresentN (n) holds iff

all present time rules in N are satisfied in n.

Definition 10 defines satisfaction of step rules over a pair of nor-
mative states. A step rule is satisfied over a pair of normative states
if it holds that if the lhs holds in the first state of the pair, then the
rhs holds in the second state. Again the definition is lifted to sets
of step rules. Note that this definition does not specify that there is
a transition from n to n′ in the transition relation. This is enforced
in definitions below.

DEFINITION 10. (Satisfaction of Step Rules) Let n, n′ be nor-
mative states and let N be a set of norms. We define that a step
rule r :

∧
l ⇒ ©(

∨
l′) is satisfied over (n, n′) iff it holds that if

n |=
∧
l then n′ |=

∨
l′. We define that SatStepN (n, n′) holds iff

all present time rules in S are satisfied over (n, n′).

We identify two types of norm compliance: weak and strong
compliance. We define that a trace weakly complies with a set of
norms if all states and transitions on that trace satisfy the norms.

DEFINITION 11. (Weak Norm Compliance) Let s be an agent
state and N a set of norms. Then a normative trace t ∈ SN (s)
weakly complies with N iff for each state n on t it holds that
SatPresentN (n), and for each two consecutive states ni, ni+1 on t
it holds that SatStepN (ni, ni+1).

We prove that our semantics is weakly compliant with norms.

THEOREM 1. Let s be an agent state and N a set of norms.
Then for all normative traces t ∈ SN (s) it holds that t weakly
complies with N .

Proof: By induction over the length of traces. Initial states of t
satisfy present time rules by Definition 8. To prove: if ni is a state
on t and SatPresentN (ni), then it holds that SatPresentN (ni+1)
and SatStepN (ni, ni+1). This follows from the fact that the transi-
tion from ni to ni+1 has to be generated by a transition rule from
Definition 6 or 7. These can only be applied if the applicable norms
are respected (in ni+1 for present time rules and over (ni, ni+1)
for step rules) or if there are no applicable norms (which yields
C = {>}), as specified through NChoices(N,n, n′) (Definition
5). 2

Our semantics is weakly norm compliant as no next transition will
be generated if all potential next transitions would violate present
time or step rules. This has the effect that if the agent runs into
a situation where it cannot do anything without violating norms,
it will stop. It may seem as if this property does not completely
capture the desired behavior of the normative semantics, as a nor-
mative semantics that does not generate any transitions would also
satisfy it. However, in combination with Corollary 1 - which says
that if there are no norms, the normative semantics will generate
the original agent traces - we can conclude that the semantics not
only generates traces that satisfy norms, but also keeps the original
agent semantics intact if possible.

One way to address these problems is to add reasoning mecha-
nisms that allow agents to choose which norms to violate, if they
cannot generate compliant behavior for all of them. Adding such

reasoning mechanisms is left for future work. Another way to ad-
dress this is to investigate how one can prevent agents from running
into a situation where all they can do is violate norms. In this paper
we characterize these situations and identify different settings (as
properties of a set of traces) in which an agent will, may, or will
not get into these situations. It is left for future work to investigate
which agent and norm properties give rise to occurrence of these
different settings.

6.2 Strong Norm Compliance
In this section we examine situations where the agent can not

proceed without violating norms where the conflicts arise from in-
teractions between the norms, i.e., situations where any action that
could in principle be executed would violate a norm. In section 6.3
we extend this to situations where we consider only actions that
would be selected by the decision mechanism.

The characterization of situations in which the agent would stop
is done by identifying different types of conflict: practical and nor-
mative conflict. These definitions apply to an action a′ that is a
normative option in n, meaning that it occurs as a positive action
literal on the rhs of an applicable step rule in that state. The con-
flicts arise because this action cannot be executed either because it
is practically impossible (because T (a′, s) is undefined), or it con-
flicts with other norms (they either specify actions which have to
be executed at the same time, or some norm forbids the execution
of a′ in n). Intuitively, practical and normative conflicts should be
avoided if possible, in particular in cases where the transition rule
of Definition 6 is not applicable. In these cases, the agent gets stuck
because it cannot satisfy norms.

DEFINITION 12. (Normative Option) Let n = 〈s, a, aux〉 be
a normative state and let N be a set of norms. We define that ac-
tion a′ is a normative option in n with respect to N , denoted as
optionN (a′, n), iff there is a step rule r :

∧
l ⇒ ©(

∨
l′) ∈ N

and applicable(r, n) and done(a′) ∈
∨
l′.

Definition 13 now describes a situation where an agent cannot
proceed in a normative fashion because its step rules require some
action to be taken which is not enabled according to the transition
function for actions.

DEFINITION 13. (Practical Conflict) We define a practical con-
flict of action a′ in n with respect to set of norms N , denoted as
pracConflictN (a′, n) as follows: pracConflictN (a′, n) holds iff
optionN (a′, n) and T (a′, s) is undefined.

Definition 14 describes situations in which an agent’s norms in-
teract in such a way that either it is forced to take two actions at
once or it is forced to take an action by one norm that is forbidden
by another.

DEFINITION 14. (Normative Conflict) Let n = 〈s, a, aux〉,
T (a′, s) = s′ and n′ = 〈s′, a′, ∅〉. We define the set of potential
normative choices, PNChoices(N,n, n′), as NChoices(N,n, n′)
without removing conjuncts that are unsatisfiable in n′ (except those
that are unsatisfiable because of inconsistencies between auxiliary
atoms; this can occur if the norms themselves are inconsistent with
each other). We define a normative conflict of action a′ in n with
respect to set of norms N , denoted as normConflictN (a′, n) as fol-
lows: normConflictN (a′, n) holds iff optionN (a′, n) and for all
c ∈ PNChoices(N,n, n′) it holds that if done(a′) ∈ c, then there
is another positive literal done(b) ∈ c, or another negative literal
¬done(a′) ∈ c.

We now show that these two types of conflict completely charac-
terize situations in which an agent cannot make a transition when

504



a normative option is available, i.e., the only situations in which an
agent cannot make a transition when a normative option is available
is when that option is either in practical or normative conflict with
the set of norms.

THEOREM 2. Let n = 〈s, a, aux〉 be a normative state and
let N be a set of norms such that SatPresentN (n). If n 6 a−→ then
for all a′ such that optionN (a′, n), either normConflictN (a′, n) or
pracConflictN (a′, n).

Proof: (By contradiction). Assume there exists some a′ such that
optionN (a′, n) and n 6 a−→ but neither normConflictN (a′, n) nor
pracConflictN (a′, n) . We seek to prove the existence of a nor-
mative state 〈s′, a′, aux′〉 allowed by Definition 7 (Step rule Se-
mantics for Triggering Action Execution). Most of the precon-
ditions of this rule follow trivially from our assumptions, leav-
ing us only to establish that given n′ = 〈s′, a′, ∅〉 there ex-
ists some c ∈ NChoices(N,n, n′) such that compatible(c, a′).
Because ¬normConflictN (a′, n) we know there exists c ∈
PNChoices(N,n, n′) such that ¬done(a′) 6∈ c and ∀b 6=
a′. done(b) 6∈ c so compatible(c, a′). Therefore c ∈
NChoices(N,n, n′). 2

Based on these definitions of conflict, we now define a strong
form of norm compliance. We say that a trace is strongly norm
compliant if it avoids situations of practical or normative conflict.
This identifies traces in which if the norms could, potentially, trig-
ger an action that action may be taken.

DEFINITION 15. (Strong Norm Compliance) Let s be an agent
state. Then a trace t ∈ SN (s) strongly complies with the set of
norms N iff t is infinite, or t is finite and for the final state nf of t
it holds that there is no action a′ such that pracConflictN (a′, nf )
or normConflictN (a′, nf ).

Our semantics does not in general adhere to strong norm com-
pliance, i.e., it is easy to construct an example where traces are
generated that do not strongly satisfy norms. Thus what we need
to do in order to get a better understanding of strong norm compli-
ance is identify different settings (as properties of a set of traces) in
which an agent will, may, or will not get into situations of conflict.
We distinguish the following interesting cases:

1. A set of norms N is conflicting: for all agent decision func-
tions Dec(Act, S, T ) and initial agent states s ∈ S, it holds
that none of the traces in SN (s) strongly complies with norms.

2. A set of norms N conflicts with agent decision function
Dec(Act, S, T ): for all agent states s ∈ S, it holds that none
of the traces in SN (s) strongly complies with norms.

3. A set of norms N is strongly satisfiable with agent decision
function Dec(Act, S, T ) and initial state s: there is a trace in
SN (s) that strongly complies with norms.

4. A set of norms N is strongly satisfied with agent decision
function Dec(Act, S, T ): for all agent states s ∈ S, it holds
that all traces in SN (s) strongly comply with norms.

5. A set of norms N is strongly satisfied: for all agent deci-
sion functions Dec(Act, S, T ) (or agent decision functions
that satisfy certain properties in relation to the norms) and all
initial agent states s ∈ S, it holds that all traces in SN (s)
strongly comply with norms.

A conflicting set of norms should be avoided. If a set of norms
conflicts with an agent decision function, the agent should try to
avoid situations where it is exposed to these norms. The challenge
then is to determine whether this is the case before it starts execu-
tion under these norms. If a set of norms is strongly satisfiable with
an agent decision function and initial state, computational reason-
ing mechanisms should be developed that allow the agent to choose
a trace which strongly complies with norms. If a set of norms is
strongly satisfied with an agent decision function, there is no need
to develop computational reasoning mechanisms as all traces will
strongly comply with norms. The challenge is then to determine
whether this is the case before the agent starts execution, to avoid
the overhead of reasoning about which trace to choose. Concerning
sets of norms that are strongly satisfied, the interesting challenge is
to find conditions (restrictions on norms) for which this is the case.
Then if norms adhere to these conditions, every agent can function
in this set of norms. Identifying such cases is future work.

6.3 Normative Decision Compliance
While strong norm satisfaction identifies situations in which

norms are unable to trigger the actions they require, we are also in-
terested in investigating situations where the norms interfere with
the agent’s execution. Clearly the purpose of norms is to modify the
behaviour of an agent so we need to identify situations in which this
modification is detrimental.

We define prohibition conflict to capture a situation where the
agent decision mechanism could choose to make a transition were
it not prevented by the norms.

DEFINITION 16. (Prohibition Conflict) Let n = 〈s, a, aux〉
be a normative state and let N be a set of norms. If s a′

−→ s′ ∈
Dec(Act, S, T ) and n′ = 〈s′, a′, ∅〉 we say that a′ is in prohibition
conflict proConflictN (a′, n) if for all c ∈ PNChoices(N,n, n′)
either ¬done(a′) ∈ c, or there is a positive literal done(b) ∈ c
such that b 6= a′.

There are whole classes of norms for which prohibition conflicts
are desirable. The problems arise in situations in which the agent
can take no action at all because of such conflicts. These would ap-
pear in finite normative traces from which the final state can make
no transition because of a prohibition conflict.

DEFINITION 17. (Normative Decision Compliance) Let s be
an agent state. Then a trace t ∈ SN (s) is said to preserve the
agent decision mechanism, Dec(Act, S, T ) iff t is infinite, or t is
finite and for the final state nf of t it holds that there is no ac-
tion a′ such that pracConflictN (a′, nf ), normConflictN (a′, nf ) or
proConflictN (a′, n).

Note that a trace which preserves a decision mechanism also strongly
complies with the norms.

As above we identify a number of interesting cases.

1. A set of norms N potentially preserves decision mechanism
Dec(Act, S, T ) for initial state s: there is a trace in SN (s)
that preserves Dec(Act, S, T ).

2. A set of norms N preserves decision mechanism
Dec(Act, S, T ): for all agent states s ∈ S, it holds that all
traces in SN (s) preserve Dec(Act, S, T ).

The existence of a trace that preserves a decision mechanism
does not guarantee that an agent can achieve its goals – for instance
the norms may have forced the agent to take actions that place it in a

505



situation where no action can be chosen by the decision mechanism
even though there is no conflict with the norms. In this situation the
agent can do nothing further even though its goals have not been
achieved. However a normative decision compliant trace is one
in which the agent has not ended up in a situation where the only
actions it would choose to take are ones that would violate a norm.

It is clearly desirable for an agent to identify strategies that will
lead to decision mechanism preserving traces. In particular it will
be useful for an agent to have strategies for those occasions when a
transition is possible under both the transition rule of Definition 6
and the rule of Definition 7. Two possible strategies are a lazy
strategy which always prefers transitions under rule 6 and delays
all norm-triggered actions until the last moment and a greedy strat-
egy which always prefers to take a norm-triggered action to one
suggested by the decision function.

It is possible, with both strategies, to construct examples in which
there are decision mechanism preserving traces which cannot be
found by the strategy. In the first case delaying norm-triggered ac-
tions can lead to situations in which it becomes “too late” and a
normative conflict arises in which the agent must take two actions
at once or a practical conflict arises in which the agent is no longer
able to take the action required by the norm. In the second case
an over-eager strategy can lead to prohibition conflicts where the
taking of a normative action leads to a state in which the norms
prevent an action being taken which could have been taken had the
norm-triggered action been delayed. Future research will have to
identify situations in which specific strategies can be shown to lead
to decision mechanism preserving traces.

7. CONCLUSION AND FUTURE WORK
In ensuring that agent programs can follow norms in a range of

different scenarios we cannot pre-compute all such possible nor-
mative behaviours at design time. Consequently, a promising route
is to have a separate, normative layer, combined with an agent rea-
soning mechanism that can take norms into account at run-time.
We have proposed an approach in which a fragment of LTL is used
to express norms, techniques from executable temporal logic define
the operational semantics of the norm-aware execution mechanism.
This mechanism abstracts from the agent decision function. Thus
as agents move between different contexts the norms will change,
yet the agent decision mechanism remains the same.

As all LTL formulae can be transformed into an equivalent set
of SNF rules, we have taken a subset of these rules just concerning
the present and next steps of the execution. Clearly this represents
only a fragment of LTL, but it allows us to describe simple norms,
such as “do A before doing B”, in a straightforward manner. The
SNF rules corresponding to the normative behaviour then provide
a form of “normative control” on agent execution.

Of course, since we only consider a fragment of executable tem-
poral logic, we cannot say that this mechanism is complete for
any temporal constraint we might provide. However, for norms
of the form mentioned above, this mechanism generates behavior
that (weakly) complies with norms.

We consider the following questions, among others, for future
work. It will be interesting to investigate the effect of complying
with norms on goal achievement, and investigate how one can guar-
antee that such goals are achieved if the agent adapts its behavior
to comply with norms (if the goals were achieved in the original
agent semantics). Also we will address the question of identifying
when a set of norms is strongly satisfied. This would allow indi-
vidual agents and potentially the designers of organisations to de-
cide when it is appropriate for some agent to adopt a set of norms,
or whether it is appropriate to impose some set of norms upon all

the agents in an organisation. Similarly given a set of norms, we
are interested in identifying strategies that will find traces that are
strongly norm compliant, or preserve the decision mechanism. Fi-
nally, it will be interesting to extend the framework with a mecha-
nism for reasoning about norm violation.

8. REFERENCES
[1] N. Alechina, M. Dastani, and B. Logan. Programming

Norm-aware Agents. In Proc. of AAMAS’12, pages
1057–1064. IFAAMAS, 2012.

[2] L. Astefanoaei, M. Dastani, J.-J. Ch. Meyer, and F.S. de
Boer. On the Semantics and Verification of Normative
Multi-Agent Systems. J. UCS, 15(13):2629–2652, 2009.

[3] H. Barringer, M. Fisher, D. Gabbay, R. Owens, and
M. Reynolds, editors. The Imperative Future: Principles of
Executable Temporal Logics. Research Studies Press, 1996.

[4] G. Boella and L. van der Torre. Regulative and constitutive
norms in normative multiagent systems. In Proc. of KR’04,
pages 255–265. AAAI Press, 2004.

[5] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming Multi-agent Systems in AgentSpeak using
Jason. Wiley, 2007.

[6] M. Dastani. 2APL: a practical agent programming language.
JAAMAS, 16(3):214–248, 2008.

[7] V. Dignum. A Model for Organizational Interaction: Based
on Agents, Founded in Logic. PhD thesis, 2004.

[8] E. Emerson. Temporal and modal logic. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume
B: Formal Models and Semantics, pages 996–1072. Elsevier,
Amsterdam, 1990.

[9] M. Esteva, J. Padget, and C. Sierra. Formalizing a language
for institutions and norms. In J.-J. Ch. Meyer and M. Tambe,
editors, Proc. 8th International Workshop on Intelligent
Agents (ATAL), volume 2333 of LNCS, pages 348–366.
Springer, 2002.

[10] M. Fisher. A normal form for temporal logics and its
applications in theorem-proving and execution. Journal of
Logic and Computation, 7(4):429–456, 1997.

[11] M. Fisher. Agent Deliberation in an Executable Temporal
Framework. Journal of Applied Logic, 9(4):223–238, 2011.

[12] M. Fisher and A. Hepple. Executing logical agent
specifications. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, Multi-Agent
Programming: Languages, Tools and Applications, pages
1–27. Springer, Berlin, 2009.

[13] K. V. Hindriks. Programming rational agents in GOAL. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah
Seghrouchni, editors, Multi-Agent Programming:
Languages, Tools and Applications. Springer, Berlin, 2009.

[14] J. F. Hübner, O. Boissier, and R. H. Bordini. A Normative
Programming Language for Multi-agent Organisations. Ann.
Math. Artif. Intell., 62(1-2):27–53, 2011.

[15] F. Meneguzzi and M. Luck. Norm-based behaviour
modification in BDI agents. In Proc. of AAMAS’09, pages
177–184, Budapest, 2009.

[16] S. Panagiotidi and J. Vázquez-Salceda. Norm-aware
planning: Semantics and implementation. In Proc. of
WI-IAT’11, pages 33–36. IEEE, 2011.

[17] M. B. van Riemsdijk, K. V. Hindriks, C. M. Jonker, and
M. Sierhuis. Formalizing organizational constraints: A
semantic approach. In Proc. of AAMAS’10, pages 823–830.
IFAAMAS, 2010.

506




