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ABSTRACT
Algorithmic Mechanism Design attempts to marry computa-
tion and incentives, mainly by leveraging monetary transfers
between designer and selfish agents involved. This is prin-
cipally because in absence of money, very little can be done
to enforce truthfulness. However, in certain applications,
money is unavailable, morally unacceptable or might simply
be at odds with the objective of the mechanism. For ex-
ample, in Combinatorial Auctions (CAs), the paradigmatic
problem of the area, we aim at solutions of maximum social
welfare, but still charge the society to ensure truthfulness.
We focus on the design of incentive-compatible CAs without
money in the general setting of k-minded bidders. We trade
monetary transfers with the observation that the mechanism
can detect certain lies of the bidders: i.e., we study truthful
CAs with verification and without money. In this setting,
we characterize the class of truthful mechanisms and give a
host of upper and lower bounds on the approximation ra-
tio obtained by either deterministic or randomized truthful
mechanisms. Our results provide an almost complete pic-
ture of truthfully approximating CAs in this general setting
with multi-dimensional bidders.
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1. INTRODUCTION
Algorithmic Mechanism Design (AMD) has as main scope

the realignment of the objective of the designer with the self-
ish interests of the agents involved in the computation. One
of the principal obstacles to concrete applications of truthful
mechanisms is the assumption that mechanisms use mone-
tary transfers. On one hand, money may provoke (unrea-
sonably) large payments [7]; on the other hand, there are
contexts for which little justification can be found for either
the presence of a digital currency or the use of money at all.
There are contexts in which money might be morally un-
acceptable (such as, to support certain political decisions)
or even illegal (as for example, in organ donations). Addi-
tionally, there are applications in which the objective of the
computation collides with the presence of money.

Consider Combinatorial Auctions (CAs), the paradigmatic
problem in AMD. In a CA, we have a set U of m goods and
n bidders. Each bidder i has a private valuation function
vi that maps subsets of goods to nonnegative real numbers.
Agents’ valuations are monotone, i.e., for S ⊇ T we have
vi(S) ≥ vi(T ). The goal is to find a partition S1, . . . , Sn
of U such that the social welfare

∑n
i=1 vi(Si) is maximized.

For CAs, we are in a paradoxical situation: whilst, on one
hand, we pursue the noble goal of maximizing the happiness
of the society (i.e., the bidders), on the other, we consider it
acceptable to charge the society itself (and then “reduce” its
total happiness) to ensure truthfulness. CAs without money
would avoid this paradox, automatically guarantee budget-
balanceness, and deal with budgeted bidders.

We focus here on k-minded (a.k.a. XOR) bidders, i.e., bid-
ders are interested in obtaining one out of a collection of k
subsets of U, and study the feasibility of designing truthful
CAs without money, returning reasonable approximations
of the optimal social welfare. This is, however, an impos-
sible task in general: it is indeed pretty easy to show that
there is no better than n-approximate mechanisms without
money, even in the case of single-item auctions and truthful-
in-expectation mechanisms [6]. We thus focus on the model
of CAs with verification, introduced in [16]. In this model,
which is motivated by a number of real-life applications and
has also been considered by economists [4], bidders do not
overbid their valuations on the set that they are awarded, if
any. The hope is that money can be traded with the verifi-
cation assumption so to be able to design “good” (possibly,
polynomial-time) mechanisms, which are truthful without
money in a well-motivated, still challenging, model.

Our Contribution. CAs with verification are perhaps best
illustrated by means of the following motivating scenario,
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discussed first in [16]. Consider a government (auctioneer)
auctioning business licenses for a set U of cities under its ad-
ministration. A company (bidder) wants to get a license for
some subset of cities (subset of U) to sell her product stock to
the market. Consider the bidder’s profit for a subset of cities
S to be equal to a unitary publicly known product price (e.g.,
for some products, such as drugs, the government could fix
a social price) times the number of product items available
in the stocks that the company possesses in the cities com-
prising S.1 In this scenario, the bidder is strategic on her
stock availability. As noted, e.g., in [4], a simple inspection
on the stock consistency implies that bidders cannot over-
bid their profits: the concealment of existing items in stock
is costless but disclosure of unavailable ones is prohibitively
costly. The assumption is therefore a kind of verification
a posteriori 2: the inspection is only carried on for the so-
lution actually implemented, and then each bidder cannot
overstate her valuation for the set she gets allocated, if any.
It is important to notice that bidders can misreport sets
and valuations for unassigned sets in an unrestricted way.
In similar scenarios, CAs with verification might be run by
governments for moneyless bidders (e.g., charities) when the
objective is social welfare maximization and an upper bound
on the bidders winning valuations can either be obtained by
direct inspection or deduced by noticing their features (e.g.,
their financial situation).

In this model, we first give a complete characterization
of truthful mechanisms in both the cases where the collec-
tions of k sets, each bidder is interested in, are public (a.k.a.
known bidders) and private (a.k.a. unknown bidders); valua-
tions are always private. The latter distinction is standard in
CAs literature (see e.g., [18, 19]), is purely technical and al-
lows the study of truthfulness under different degrees of dif-
ficulty. Our results hold either for both settings (i.e., charac-
terizations) or in the harder of the two: unknown bidders for
the upper bounds and known bidders for the lower bounds.
Truthfulness is characterized in this context in terms of k-
monotone algorithms: if a known bidder is awarded a set S
and augments her declaration for S, then she must get a set
“not worse” than S. This generalizes neatly to the case of
unknown bidders. Two important considerations follow: (i)
Our characterization is significant especially when one ob-
serves that the corresponding problem for CAs with money
and k-minded bidders is open already for k = 2; (ii) Our
notions of monotone algorithms generalize the properties of
monotonicity shown to characterize truthfulness with money
for single-minded bidders [19, 18] and proved to be sufficient
for so-called generalized single-minded bidders [2]. This is
an interesting development as it is the first case in which
a truthful mechanism with money can be “translated” into
a truthful mechanism without money. The price to pay is
“only” to perform verification to prevent certain lies of the
bidders, while algorithms (and their approximation guaran-
tees) remain unchanged. Thus, in light of our results, pre-
viously known algorithms presented in, e.g., [18, 2, 10], are
truthful not only when money can be used, but also in ab-

1Bidders will sell products already in stock (i.e., no produc-
tion costs are involved).
2A stronger model of verification would require bidders to
be unable to overbid at all and not just on the awarded
set. However, there appears to be weaker motivations for
this model: the investment required on inspections would
be considerable and rather unrealistic.

sence of money when verification can be implemented. This
equivalence gives also a strong motivation for our model.

Armed with the characterization of truthfulness, we pro-
vide a number of upper and lower bounds on the approxi-
mation guarantee of truthful CAs without money and with
verification to the optimal social welfare. The upper bounds
hold for the harder case of unknown bidders. In the case
where each good in U has a supply b, we give an upper bound
of O(b b

√
m). This algorithm is deterministic, runs in poly-

nomial time, and adapts an idea of multiplicative update of
good prices by [17]. With similar ideas, we obtain random-
ized universally truthful mechanisms with approximation ra-
tios of O(d1/b log(bm)) and O(m1/(b+1) log(bm)), where d is
the maximum size of sets in the bidders’ collections. Our
most significant deterministic polynomial-time upper bound
is obtained, in the case of b = 1, by a simple greedy mecha-
nism that exploits the characteristics of the model without
money. This algorithm returns a min{m, d+1}-approximate
solution. Two simple randomized universally truthful CAs
without money complete the picture: the first achieves a
k-approximation in exponential time; the second runs in-
stead in polynomial-time and has a O(

√
m)-approximation

guarantee. We note here that all our polynomial-time up-
per bounds are computationally (nearly) best possible even
when the algorithm has full knowledge of the bidders’ data.

We complement this study by showing a host of lower
bounds on the approximation guarantee of truthful CAs
without money for known bidders, without any computa-
tional assumption. We prove the following lower bounds:
2 for deterministic mechanisms; 5/4 for universally truth-
ful mechanisms; and, finally, 1.09 for truthful-in-expectation
mechanisms. This implies that the optimal mechanisms are
not truthful in our model. Stronger lower bounds are proved
for deterministic truthful mechanisms that use priority al-
gorithms [1]. These algorithms process (and take decisions)
one elementary item at the time, from a list of ordered items.
The ordering can also change adaptively after each item is
considered (e.g., our greedy mechanism falls in the category
of non-adaptive priority algorithms). We give a lower bound
of d for priority algorithms that process bids as elementary
items (thus, essentially matching the upper bound of the
greedy algorithm), and a lower bound of m/2 in the case in
which the algorithm processes bidders as items.

Our bounds give a very interesting picture of the relative
power of verification versus money. For example, we have a
O(
√
m)-approximate universally truthful mechanism, which

matches the guarantee of the universally truthful mecha-
nism with money given by [5]. However, our lower bounds
show that it is not possible to implement the optimal out-
come without money; while we can do so in exponential
time using VCG payments. If we restrict to polynomial-time
mechanisms, we have a deterministic greedy mechanism that
is truthful without money and min{m, d+ 1}-approximate;
with money, instead, it is not known how to obtain any
polynomial-time deterministic truthful mechanism with an
approximation ratio better than O(m/

√
logm) [13]. More-

over, [1] proved a lower bound of Ω(m) on the approximation
ratio of any truthful greedy mechanism with money for in-
stances with d = 2. Our greedy mechanism achieves an ap-
proximation ratio of 3 for such instances, which implies that
the lower bound of [1] does not hold in our model without
money. Additionally, we show that the greedy mechanism
cannot be made truthful with money, which suggests that
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the model without money couples better with greedy selec-
tion rules. A general lower bound in terms of m for CAs
without money would shed further light on this debate of
power of verification versus power of money; we offer an in-
teresting conjecture in § 5.2. Due to space constraints, we
defer some of the proofs to the full version of this paper [8].

Related Work. CAs as an optimization problem (without
strategic consideration) is NP-hard to solve optimally or
even to approximate: neither an approximation ratio of
m1/2−ε, for any constant ε > 0, nor of O(d/ log d) can be ob-
tained in polynomial time [20, 18, 12]. Hence, a large body
of literature has focused on the design of polynomial-time
truthful CAs that return as good an approximate solution
as possible, under assumptions (i.e., restrictions) on bidders’
valuation domains, such as single-minded domains [18, 19,
2] and the settings listed in [21, Fig. 11.2].

In [16], instead of restricting the domains of the bidders,
it is proposed to restrict the way bidders lie. We adopt here
their model, adapting it to the case without money. The
definition of CAs with verification is inspired by the litera-
ture on mechanisms with verification (see, e.g., [22, 23] and
references therein) and by similar models studied in theo-
retical economics, see, e.g., [11, 4, 3]. The economic model
closest to ours is that of [4], where verification takes place
for every outcome, and not just for the implemented solu-
tion, and is therefore stronger and less realistic than ours.
Moreover, the results in [3] suggest that “one-sided” verifi-
cation in necessary, for otherwise truthful implementation is
equivalent to truthful implementation with verification.

Our work fits in the framework of approximate mecha-
nism design without money, initiated by [24]. The idea is
that for optimization problems where the optimal solution
cannot be truthfully implemented without money, one may
resort to the notion of approximation, and seek for the best
approximation ratio achievable by truthful mechanisms. Ap-
proximate mechanisms without money have been obtained
for various problems, among them, for locating 1 or 2 facil-
ities in metric spaces (see e.g., [24]). Due to the apparent
difficulty of truthfully locating 3 or more facilities with a
good approximation guarantee, notions conceptually similar
to our notion of verification have been proposed [9]. Truthful
mechanisms without money for scheduling selfish machines
whose execution times can be (strongly) verified are con-
sidered in [14]. Mechanisms without money for a so-called
Generalized Assignment problem are studied in [6]: n selfish
jobs compete to be processed by m unrelated machines; the
only private data of each job is the set of machines by which
it can be actually processed. This problem can be cast as
a special case of CAs with d = 1 and then [6, Algorithm 1]
can be regarded as a special case of our greedy algorithm.

2. MODEL AND PRELIMINARIES
In CAs we have a set U ofm goods and n agents, a.k.a. bid-

ders. Each k-minded (a.k.a. XOR-bidder) i has a private
valuation function vi and is interested in obtaining only one
set in a private collection Si of subsets of U, and |Si| = k.3

Each valuation function vi maps subsets of goods to non-

3We focus on unknown bidders; the discussion naturally
adapts to known bidders, where Si is known. We can think
that Si is part of the definition of the private valuation func-
tions vi. Saying that Si is known, we mean that this part of
vi, namely Si, is public, anything else about vi is private.

negative real numbers (vi(∅) is normalized to be 0), and is
monotone: for S ⊇ T we have vi(S) ≥ vi(T ). The goal is to
find a partition S1, . . . , Sn of U such that

∑n
i=1 vi(Si), the

social welfare, is maximized.
E.g., consider U = {1, 2, 3} and the first bidder to be

interested in S1 = {{1}, {2}, {1, 2}}. The valuation function
of bidder i for S 6∈ Si is vi(S) = maxS′∈Si:S⊇S′{vi(S

′)} if
∃S′ ∈ Si ∧ S ⊇ S′, and 0 otherwise. We say that vi(S) 6= 0
(for S 6∈ Si) is defined by an inclusion-maximal set S′ ∈ Si
such that S′ ⊆ S and vi(S

′) = vi(S). If vi(S) = 0, we say
that ∅ defines it. So, here, v1({1, 2, 3}) is defined by {1, 2}.

We assume that bidders are interested in sets of size at
most d ∈ N, i.e., d = max{|S| : ∃ i s.t. S ∈ Si ∧ vi(S) > 0}.
We let Ti be a set of k non-empty subsets of U and zi be the
corresponding valuation of bidder i, i.e., zi : Ti → R+

0 . We
call bi = (zi, Ti) a declaration (or bid) of bidder i. We let
ti = (vi,Si) be the true type of bidder i and let Di denote
the domain of bidder i, i.e., the set of all i’s possible bids
for all possible types of i.

Fix the bids b−i of all agents but i. For any bi = (zi, Ti)
in Di, let Ai(bi,b−i) be the set that auction A on input
b = (bi,b−i) allocates to bidder i. If no set is allocated to i,
we set Ai(bi,b−i) = ∅. We say that A is a truthful auction
without money if for any bidder i, bi ∈ Di and b−i we have:

vi(Ai(ti,b−i)) ≥ vi(Ai(b)). (1)

We also define notions of truthfulness in the case of random-
ization: we either have universally truthful CAs, when the
mechanism is a probability distribution over deterministic
truthful mechanisms, or truthful-in-expectation CAs, when
in (1), we use the expected values, over the random coin
tosses of the algorithm, of the valuations.

We say that a mechanism A is an α-approximation for
CAs with k-minded bidders if for all instances t = (vi,Si)ni=1,∑n
i=1 vi(Ai(t)) ≥ OPT/α, where OPT denotes the maxi-

mum social welfare for instance t.
We recall that Ai(ti,b−i) may not belong to the set of de-

manded sets Si; there can be several sets in Si (or none) that
are subsets of Ai(ti,b−i). However, as observed above, the
valuation is defined by a set in Si∪{∅} which is an inclusion-
maximal subset of Ai(ti,b−i) that maximizes the valuation
of agent i. We denote such a set as σ(Ai(ti,b−i)|ti), i.e.,
vi(Ai(ti,b−i)) = vi(σ(Ai(ti,b−i)|ti)). In our running ex-
ample, it can be that for some algorithm A and some b−1,
A1(t1,b−1) = {1, 2, 3} 6∈ S1. Then, the valuation of {1, 2, 3}
is defined by {1, 2}, which is denoted as σ(A1(t1,b−1)|t1).
Similarly, we define σ(Ai(bi,b−i)|bi)) ∈ Ti ∪ {∅} with re-
spect to Ai(bi,b−i) and declaration bi. By the same reason-
ing, we let σ(Ai(bi,b−i)|ti) denote the set in Si ∪ {∅} s.t.
vi(Ai(bi,b−i)) = vi(σ(Ai(bi,b−i)|ti)).

In this work, we focus on exact algorithms in the sense
of [18], i.e., Ai(bi,b−i) ∈ Ti ∪ {∅}. Then, since valuations
are monotone, Ai(bi,b−i) = σ(Ai(bi,b−i)|bi) and by defi-
nition of σ(·|·), for any ti and bi in Di: σ(Ai(bi,b−i)|ti) ⊆
Ai(bi,b−i) = σ(Ai(bi,b−i)|bi).

In our verification model, each bidder can only declare
lower valuations for the set she is awarded. Formally, bidder
i with type ti = (vi,Si) can declare bi = (zi, Ti) iff

zi(Ai(bi,b−i)) ≤ vi(σ(Ai(bi,b−i)|ti)) , (2)

when Ai(bi,b−i) 6= ∅. Bidder i evaluates the assigned set
Ai(bi,b−i) ∈ Ti as σ(Ai(bi,b−i)|ti) ∈ Si ∪ {∅}. Thus, the
set Ai(bi,b−i) can be used to verify a posteriori that i has
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overbid declaring zi(Ai(bi,b−i)) > vi(σ(Ai(bi,b−i)|bi)) =
vi(σ(Ai(bi,b−i)|ti)). In the motivating scenario above, the
set of cities Ai(bi,b−i) for which the government assigns
licenses to bidder i when declaring bi, can be used to verify
overbidding by simply counting the items available in the
stocks of the cities for which licenses are granted to i.

When (2) is not satisfied, the bidder is caught lying by
the verification step. We assume that this behavior is very
undesirable for the bidder (e.g., in such a case the bidder
loses prestige and the possibility to participate in future auc-
tions). This way (1) is satisfied directly when (2) does not
hold and truthfulness of an auction is fully captured by (1)
holding only for any i, b−i and bi = (zi, Ti) ∈ Di such that
(2) is fulfilled. Since we focus on truthful mechanisms with
verification and no money, we sometimes avoid to mention
that and simply refer to truthful mechanisms/algorithms.

We prove truthfulness by using a variant of the so-called
cycle monotonicity technique: Fix algorithm A, bidder i and
bids b−i. The declaration graph associated to A has a vertex
for each possible declaration in the domain Di. We add an
arc between a = (z, T ) and b = (w,U) in Di whenever a bid-
der of type a can declare to be of type b obeying (2). Namely,
edge (a, b) belongs to the graph iff z(σ(b|a)) ≥ w(σ(b|b)).4,5
The weight of the edge (a, b) is z(σ(a|a))−z(σ(b|a)) and en-
codes the loss that a bidder of type (z, T ) incurs by declaring
(w,U). The following result relates the weight of edges of
the declaration graph to the truthfulness of the algorithm.

Proposition 2.1. A mechanism A is truthful with verifi-
cation and without money for CAs with k-minded bidders if
and only if each declaration graph associated to A does not
have any negative-weight edges.

3. CHARACTERIZATION OF TRUTHFUL
MECHANISMS

We characterize now truthful mechanisms in our setting,
for known and unknown bidders. Interestingly, the charac-
terizing property is algorithmic and turns out to be a gener-
alization of the properties used for the design of truthful CAs
with money and no verification for single-minded bidders.

3.1 Characterization for Known Bidders
Here, for each k-minded bidder i, we know Si. The follow-

ing property generalizes monotonicity of [19] and character-
izes truthful auctions without money and with verification.

Definition 3.1. A mechanism A is k-monotone if for
any i, any b−i, and any a ∈ Di, if Ai(a,b−i) = S, then
for all b ∈ Di with b(S) ≥ a(S), b(Ai(b,b−i)) ≥ b(S).

Theorem 3.2. A mechanism A is truthful with verifica-
tion and without money for known k-minded bidders if and
only if A is k-monotone.

Proof. Fix i, b−i and consider the declaration graph
associated to A. Take any edge (b, a), and let S denote
Ai(a,b−i). By definition, the edge exists iff b(S) ≥ a(S).

4We let σ(b|a) be a shorthand for σ(Ai(b,b−i)|a) when A, i
and b−i are understood.
5From (2), for an edge (a, b) in the declaration graph, we
should require that z(σ(b|a)) ≥ w(σ(b|b)) only whenever
σ(b|b) 6= ∅. But from monotonicity and normalization of val-
uations, z(σ(b|a)) ≥ w(σ(b|b)) also when σ(b|b) = ∅, since
σ(b|a) = ∅ and z(∅) = w(∅) = 0.

IfA is k-monotone, we also have that b(Ai(b,b−i)) ≥ b(S),
and then the weight b(Ai(b,b−i))−b(S) of edge (b, a) is non-
negative. Vice versa, assume that the weight of (b, a) is non-
negative. This means that whenever b(S) ≥ a(S), it must be
b(Ai(b,b−i)) ≥ b(S), and therefore A is k-monotone. The
theorem follows from Proposition 2.1.

3.2 Characterization for Unknown Bidders
The following property generalizes the property of mono-

tonicity of mechanisms defined by [18] and characterizes
truthful auctions without money and with verification.

Definition 3.3. A mechanism A is k-set monotone if the
following holds for any i, any b−i and any a = (z, T ) ∈ Di:
if Ai(a,b−i) = T then for all b = (w,U) such that σ(T |b) =
U , w(U) ≥ z(T ) we have Ai(b,b−i) = S with w(S) ≥ w(U).

To explain how this notion generalizes [18], we discuss the
role of U . In detail, σ(T |b) = U , in Definition 3.3, should
be read as to indicate that bidder i going from declaration
a to declaration b, substituted T ∈ T with U ∈ U and U ⊆
T . This is because σ(T |b) denotes the set in the collection
of sets demanded by a bidder of type b which defines the
valuation of T . Specifically, U ∈ U is such that w(U) =
w(T ). (Note that if T belonged to U , then U would be T
itself.) Extending the proof of Theorem 3.2, we show that:

Theorem 3.4. A mechanism A is truthful with verifica-
tion and without money for k-minded bidders if and only if
A is k-set monotone.

Proof. Fix i, b−i and consider the declaration graph
associated to A. Take any edge (b = (w,U), a = (z, T )) and
let T denote Ai(a,b−i). By definition, the edge exists if and
only if w(U) ≥ z(T ), with U = σ(T |b).

Now if the algorithm is k-set monotone, we have that
w(Ai(b,b−i)) ≥ w(U), and the weight w(Ai(b,b−i))−w(U)
of edge (b, a) is non-negative. Vice versa, assume that the
weight of (b, a) is non-negative. Hence, whenever w(U) ≥
z(T ), it must be w(Ai(b,b−i)) ≥ w(U), and thus A is k-set
monotone. The theorem follows from Proposition 2.1.

Similarly to [19, 18], k-(set) monotonicity implies the ex-
istence of thresholds (a.k.a., critical prices) (for every set).
The result in Theorem 3.4 relates to the characterization of
truthful CAs with money and no verification (see, e.g., [21,
Prop. 9.27]). While the two characterizations look pretty
similar, there is an important difference: in the setting with
money and no verification, each bidder optimizes her valu-
ation minus the critical price over all her demanded sets; in
the setting without money and with verification, each bid-
der optimizes only her valuation over all her demanded sets
among those that are bounded from below by the threshold.

3.3 Implications of Characterizations
A consequence of our results is that a reasonably large

class of truthful mechanisms with money can be turned into
truthful mechanisms without money but with verification.

3.3.1 Single-Minded versus Multi-Minded Bidders
Our characterization of truthful mechanisms without

money for CAs with known and unknown 1-minded bidders
is exactly the same as the characterization of truthful mecha-
nisms with money in this setting, see, e.g., [21, pp. 274-275].
Thus, the two classes of truthful mechanisms coincide.
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Algorithm 1: Multiplicative price update

1 For each good e ∈ U do p1e := p0.
2 For each bidder i = 1, 2, . . . , n do

3 Si := arg max{vi(S) : S ∈ Si s.t. vi(S) ≥
∑
e∈S p

i
e}.

4 Update for each good e ∈ Si: pi+1
e := pie · r.

5 Return S = (S1, S2, . . . , Sn).

Proposition 3.5. Any (deterministic) truthful α-appro-
ximation mechanism with money for single-minded CAs can
be turned into a (deterministic) truthful α-approximation
mechanism without money with verification for the same
problem, and vice versa. This holds for single-minded CAs
with either known or unknown bidders.

3.3.2 Beyond Combinatorial Auctions
A slight generalization of monotonicity [18] is sufficient to

obtain truthful mechanisms with money for problems in-
volving generalized single-minded bidders [2]. Intuitively,
generalized single-minded bidders have k private numbers
in their type: their valuation for a solution is equal to the
first of these values or minus infinity, depending on whether
the solution asks the agent to “over-perform” on one of the
other k − 1 parameters, see [2]. By Theorem 3.4, all the
truthful mechanisms with money for this quite general type
of bidders can be turned into truthful mechanisms without
money, when the verification paradigm is justifiable. As a
corollary of our characterization, we then have a host of
truthful mechanisms without money and with verification
for the (multi-objective optimization) problems in [2, 10].

4. UPPER BOUNDS FOR UNKNOWN BID-
DERS

In this section, we present our upper bounds on the ap-
proximability of CAs with unknown k-minded bidders by
truthful mechanisms without money and with verification.

4.1 CAs with Arbitrary Supply of Goods
Next, we consider the more general case where elements

in U are available in b copies each. Note that out char-
acterizations above hold also in this case. We present three
polynomial-time algorithms, which are truthful for CAs with
unknown bidders: the first is deterministic, the remaining
are randomized and give rise to universally truthful CAs.

4.1.1 Deterministic Truthful CAs
We adapt here the overselling multiplicative price update

algorithm and its analysis from [17] to our setting. The
algorithm is given a parameter µ ≥ 1 s.t. µ/2 ≤ vmax < µ.
We first assume that µ is known to the mechanism. We then
modify our mechanism showing how to truthfully guess vmax.

Algorithm 1 processes the bidders in an arbitrary given
order, i = 1, 2, . . . , n. The algorithm starts with some rel-
atively small, uniform price p0 = µ

4bm
of each item. When

considering bidder i, the algorithm uses the current prices
as defining thresholds and allocates to bidder i a set Si in
her demand set Si that has the maximum valuation vi(Si)
among all her sets with valuations above the thresholds.
Then the prices of the elements in the set Si are increased
by a factor r and the next bidder is considered.

Let `ie be the number of copies of good e ∈ U allocated to
all bidders preceding bidder i and `∗e = `n+1

e denote the total

Algorithm 2: Modified multiplicative price update

1 For each bidder i ∈ {1, 2, . . . , n}, let vimax be the
valuation of i’s most valuable set.

2 Let j ∈ {1, 2, . . . , n} be the bidder with highest value

vjmax (smallest index in case of ties).

3 Let p0 = µ
4bm

, where µ = (1 + ε)vjmax, for a fixed
0 < ε� 1.

4 For each good e ∈ U do pje := p0
5 For any i = j, 1, 2, 3, 4, . . . , j − 1, j + 1, . . . , n, let next(i)

be the next number in this order, e.g., next(j) = 1,
next(1) = 2, . . ., next(j − 1) = j + 1, . . .,
next(n− 1) = n, next(n) = n+ 1.

6 For each bidder i = j, 1, 2, . . . , j − 1, j + 1, . . . , n do

7 Si := arg max{vi(S) : S ∈ Si s.t. vi(S) ≥
∑
e∈S p

i
e}.

8 Update for each good e ∈ Si: pnext(i)
e := pie · r.

9 Return S = (S1, S2, . . . , Sj−1, Sj , Sj+1, . . . , Sn).

allocation of good e to all bidders. Let, moreover, p∗e = p0r
`∗e

be good e’s price at the end of the algorithm.
We claim that if p0 and r are chosen so that p0r

b = µ, then
the allocation S = (S1, . . . , Sn) of Algorithm 1 is feasible,
i.e., it assigns at most b copies of each good. To show this,
fix any good e ∈ U, and observe that when the b-th copy of
e is sold to any bidder, its price becomes p0r

b = µ > vmax.
Thus, good e alone has a price which is above the maximum
valuation of any bidder, and so no further copy will be sold.

Let OPT be the optimal social welfare. We can show that:

Theorem 4.1. Algorithm 1 with parameters p0 = µ
4bm

and r = (4bm)1/b produces a feasible allocation (S1, . . . , Sn)
of social welfare

∑n
i=1 vi(Si) ≥

OPT
2(b(r−1)+1)

≥ OPT

O(b·(m)1/b)
.

Moreover, it is a truthful mechanism without money and
with verification for CAs with unknown k-minded bidders.

We can modify Algorithm 1 and remove the assumption on
the knowledge of µ. The modified algorithm is Algorithm 2.

Theorem 4.2. Algorithm 2 is a O(b·(m)1/b)-approximate
truthful mechanism without money and with verification for
CAs with unknown k-minded bidders.

4.1.2 Randomized Truthful CAs
We next discuss how to use Algorithm 2 to obtain random-

ized universally truthful mechanisms with expected approx-
imation ratios of O(d1/b log(bm)) and O(m1/(b+1) log(bm)).

To this end, observe that if we execute Algorithm 1 with
a smaller update factor r = 21/b, the output solution allo-
cates at most sb copies of each good to the bidders, where
s = log(4bm) [17, Lemma 1]. This simply follows from
the fact that if sb copies of good e ∈ U were sold, then
its price would be p02log(4bm) = µ > vmax. But this in-
feasible solution is an O(1)-approximation to the optimal

feasible solution: plugging r = 21/b in the approximation
ratio of 2(b(r − 1) + 1) in Theorem 4.1 implies an O(1)-
approximation (see also [17, Theorem 1]). This idea leads to

the following randomized algorithm in [17]: use r = 21/b, ex-
plicitly maintain feasibility of the produced solution, and de-
fine q = 1/(2ed1/b log(4bm)), where e ≈ 2.718, as the proba-
bility of allocating the best set to a bidder. This algorithm
is O(d1/b log(4bm))-approximate and universally truthful for
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Algorithm 3: The greedy algorithm.

1 Let l denote the number of different bids, l = nk.
2 Let b1, b2, . . . , bl be the non-zero bids and S1, . . . , Sl be

the corresponding sets, ordered such that b1 ≥ . . . ≥ bl.
In case of ties between declarations of different bidders
consider first the smaller index bidder.

3 For each j = 1, . . . , l let β(j) ∈ {1, . . . , n} be the bidder
bidding bj for the set Sj .

4 P := ∅, B := ∅.
5 For i = 1, . . . , l do
6 If β(i) 6∈ B ∧ Si ∩ S = ∅ for all S in P then
7 (a) P := P ∪ {Si}, and (b) B := B ∪ β(i).
8 Return P.

CAs with money, cf. [17]. Introducing the same randomiza-

tion idea into our Algorithm 2, with r = 21/b, we show that:

Theorem 4.3. There exists a universally truthful mecha-
nism without money and with verification for CAs with un-
known k-minded bidders with an expected approximation ra-
tio of O(d1/b · log(bm)).

Building on Theorem 4.3, we can also obtain a universally
truthful mechanism for demanded sets of unbounded size.

Theorem 4.4. There exists a universally truthful mecha-
nism without money and with verification for CAs with un-
known k-minded bidders with an expected approximation ra-
tio of O(m1/(b+1) · log(bm)).

4.2 CAs with Single Supply
We now go back to the case where the goods in U are pro-

vided with single supply. In this section, we present three
incentive-compatible CAs: the first is deterministic, the re-
maining two are randomized. Among these three mecha-
nisms, only two run in polynomial time.

4.2.1 Greedy Algorithm
We start with a simple greedy algorithm for CAs where

the supply b = 1, see Algorithm 3. We note that for goods
with arbitrary supply b, the greedy algorithm cannot do bet-
ter than Algorithm 2 because of the lower bound of

√
m in

[15]. Recall that each bidder i = 1, 2, . . . , n declares (vi,Si),
where Si is a collection of k sets bidder i demands and vi(S)
is the valuation of set S ∈ Si. Observe that sets S1, . . . , Sl
are all the sets demanded by all bidders (with non-zero bids).

We will use linear programming duality to prove the ap-
proximation guarantees of our algorithm. We denote the set
family S = ∪ni=1Si, where bidder i demands sets Si. For a
given set S ∈ Si, we denote by bi(S) the bid of bidder i for
that set. Let [n] = {1, . . . , n}. The LP relaxation of our
problem and its corresponding dual linear program are:

max
∑n
i=1

∑
S∈Si bi(S)xi(S)

s.t.
∑n
i=1

∑
S:S∈Si,e∈S xi(S) ≤ 1, ∀e ∈ U (∗)∑

S∈Si xi(S) ≤ 1, ∀i ∈ [n]

xi(S) ≥ 0, ∀i ∈ [n] ∀S ∈ Si

min
∑
e∈U ye +

∑n
i=1 zi

s.t. zi +
∑
e∈S ye ≥ bi(S), ∀i ∈ [n] ∀S ∈ Si (∗∗)

zi, ye ≥ 0, ∀i ∀e ∈ U.

Theorem 4.5. Algorithm 3 is a min{m, d + 1}-approxi-
mation algorithm for CAs with unknown k-minded bidders.

Proof. Let P be a solution output by Algorithm 3, and
SATP = ∪S∈PS. For each set S ∈ S with S 6∈ P, there
either is an element e ∈ SATP ∩ S which was the witness
of event S 6∈ P, or there exists a bidder i and set S′ ∈ P
such that S′, S ∈ Si. For each set S ∈ S \ P, we keep in
SATP one witness for S. If there is more than one witness
in SATP ∩S, we keep in SATP the (arbitrary) witness for S
that belongs to the set among sets {T ∈ P : SATP ∩S ∩ T}
that was considered first by the greedy order. We discard
the remaining elements from SATP .

Let us also denote P(S) = S ∩ SATP if S ∩ SATP 6= ∅
and P(S) = S if S ∩ SATP = ∅.

Observe first that if m = 1, then any feasible solution
just has a single set assigned to a single bidder and thus the
algorithm outputs an optimal solution, as required.

Under the ssumption that m ≥ 2, we will define a dual
solution during the execution of Algorithm 3, using the so-
lution P (P is needed only for analysis). In line 4 of Algo-
rithm 3 we initialize the duals: ye := 0 for all e ∈ U and
zi := 0 for all i ∈ [n]. We add the following in line 7(a)
of Algorithm 3: ye := ∆Si

e , for all e ∈ P(Si), where ∆Si
e =

bβ(i)(Si)

|P(Si)|
, for e ∈ P(Si). Note, that for e ∈ Si \ SATP the

value of ye is not updated and remains zero. We also add
the following in line 7(a) of Algorithm 3: zβ(i) := bβ(i)(Si).

The following lower bound on the cost of P is obvious:∑
e∈U

ye ≤
∑
Si∈P

bβ(i)(Si). (3)

We next show that the scaled solution (d′ · y, z) is feasible
for the dual linear program, where d′ = min{d,m− 1}. We
need to show that (∗∗) holds, that is, for each set S ∈ S∩Si,

zi + d′
∑
e∈S

ye ≥ bi(S). (4)

Suppose first that S = Sr ∈ S \ P, and let β(r) = i. Set
S was not included in P because of two possible reasons: (i)
Case (a): there is an e ∈ SATP such that e ∈ S, or (ii)
Case (b): there is a set S′ ∈ P with S, S′ ∈ Si.

We first consider Case (a). Then, adding set S to solution
P would violate constraint (∗). Let S′′ = Sj ∈ P be the set
in the solution that contains element e and let h = β(j).

Recall that e ∈ S ∩ S′′, thus
∑
e′∈S ye′ ≥ ye = ∆S′′

e =
bh(S

′′)
|P(S′′)| ≥

bh(S
′′)

d
≥ bi(S)

d
, where the last inequality follows

from the greedy selection rule and definition of the wit-
nesses. In the case if |S| = m, that is, S = U, we obtain

that
∑
e′∈S ye′ ≥

∑
e′′∈S′′ ye′′ =

∑
e′′∈S′′ ∆

S′′

e′′ = bh(S′′) ≥
bi(S), where the last inequality is by the greedy selection
rule. Because m ≥ 2, this proves (4) in Case (a).

We consider now Case (b). Suppose that S = Sr ∈ S \ P
and there is a set S′ = Sj ∈ P with S, S′ ∈ Si. Then we
have i = β(j) = β(r). Observe that when set S′ was chosen
by Algorithm 3 the dual variable zi was updated in line 7(a)
as follows: zi = bi(S

′). Now, because set S′ was considered
by the algorithm before set S we have zi = bi(S

′) ≥ bi(S)
by the greedy selection rule, which implies (4) in this case.

Claim (4) follows from the definition of zi if set S ∈ Si is
chosen to P, that is, S ∈ P. This concludes the proof of (4).

We put all the pieces together. The dual solution (d′ ·
y, z) is feasible for the dual linear program and so by weak
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duality
∑n
i=1 zi+d′

∑
e∈U ye is an upper bound on the value

of the optimal integral solution to our problem. We have also
shown in (3), that

∑
e∈U ye ≤

∑
Si∈P bβ(i)(Si). By letting

OPT denote the optimal social welfare, we obtain:

OPT ≤
n∑
i=1

zi + d′
∑
e∈U

ye =
∑
Si∈P

zβ(i) + d′
∑
e∈U

ye

≤
∑
Si∈P

bβ(i)(Si) + d′
∑
Si∈P

bβ(i)(Si)

= (d′ + 1)
∑
Si∈P

bβ(i)(Si) ,

which concludes the proof.

Theorem 4.6. Algorithm 3 is a truthful mechanism with-
out money and with verification for CAs with unknown k-
minded bidders.

Proof. Fix i and b−i. As in Definition 3.3, take two
declarations of bidder i, a = (z, T ) and b = (w,U) with
w(U) ≥ z(T ), where T = Ai(a,b−i) and U = σ(T |b) (here
A denotes Algorithm 3). Recall that U ∈ U and U ⊆ T .

Let Sa (resp., Sb) be the set comprised of the sets in dec-
larations of b−i processed by A(a,b−i) (resp., A(b,b−i))
when z(T ) (resp., w(U)) is considered. Since A grants T to
bidder i in the instance (a,b−i), it must be the case that
T ∩ S = ∅ for all S ∈ Sa granted by A. Since w(U) ≥ z(T ),
we have that Sb ⊆ Sa. Thus, since U ⊆ T then we have that
U ∩ S = ∅ for all S ∈ Sb granted by the algorithm. There-
fore, the only reason for which U might not be granted to i
is that A had already granted a set in U to i, which implies
that w(Ai(b,b−i)) ≥ w(U). Then the algorithm is k-set
monotone and the claim follows from Theorem 3.4.

[1, Theorem 2] shows a lower bound of Ω(m) on the ap-
proximation ratio of any truthful greedy priority mechanism
with money for instances with d ≤ 2. Nevertheless, Algo-
rithm 3 is truthful without money and with verification and
achieves an approximation ratio of 3 for such instances. We
next explain the reasons behind this sharp contrast.

Proposition 4.7. There are no payments that augment
Algorithm 3 so to make a truthful mechanism for CAs with
k-minded bidders, even in the case of known bidders.

4.2.2 Randomized Exponential-Time Mechanism
We describe an exponential-time randomized mechanism,

or RandExp in brief. Let I be an instance with unknown
k-minded bidders, and let I`, 1 ≤ ` ≤ k, be the subinstance
consisting of the elementary bids (i, S`i , vi(S

`
i )), i ∈ N , where

S`i is the `-th most valuable set demanded by bidder i. Then,
RandExp computes the maximum social welfare OPT` for
each subinstance I` by breaking ties among optimal solutions
in a bid-independent way, and outputs the allocation corre-
sponding to OPT` with probability 1/k, for each ` ∈ [k].

Theorem 4.8. RandExp is a k-approximate universally
truthful mechanism without money and with verification for
CAs with unknown k-minded bidders.

4.2.3 Randomized Polynomial-Time Mechanism
We conclude with a polynomial-time randomized mecha-

nism, or RandPoly in brief. Let I be an instance of CAs with

unknown k-minded bidders, let vmax be the maximum val-
uation of some bidder, and let Smax be a set with valuation
vmax. Moreover, let Is be the subinstance that consists of the
elementary bids (i, S, vi(S)), i ∈ N , where |S| ≤

√
m. Then,

RandPoly either only allocates Smax to the corresponding
bidder breaking ties in a bid-independent way with proba-
bility 1/2, or with probability 1/2, outputs the allocation
computed by the Algorithm 3 on the subinstance Is.

Theorem 4.9. RandPoly is a O(
√
m)-approximate uni-

versally truthful mechanism without money and with verifi-
cation for CAs with unknown k-minded bidders.

5. LOWER BOUNDS FOR KNOWN BID-
DERS

We first adapt the proof of [6, Theorem 3.3] and show a
lower bound of 2 on the approximation ratio of any deter-
ministic truthful mechanism. We highlight that this lower
bound, as well as the lower bounds of Theorems 5.2 and 5.3
below, hold even for exponential-time mechanisms and for
simple instances with n = 2 bidders and m = 2 goods.

Theorem 5.1. There are no deterministic truthful mech-
anisms with approximation ratio better than 2 for CAs with
known 2-minded bidders.

The bound of Theorem 5.1 is tight, since Algorithm 3 gives
a 2-approximation for such instances. Theorem 5.1 indicates
that our assumption that the bidders do not overbid on their
winning sets is less powerful than the use of payments, when
we do not take computational issues into account. Further-
more, it shows that already with double-minded bidders, the
class of algorithms that can be implemented with money is
a strict superset of the class of 2-monotone algorithms.

We next apply Yao’s principle and show a lower bound of
5/4 for randomized universally mechanisms.

Theorem 5.2. There are no randomized mechanisms
that are universally truthful and have approximation ratio
better than 5/4 for CAs with known 2-minded bidders.

Proof. We present a probability distribution over in-
stances with 2 bidders and 2 goods for which the best de-
terministic truthful mechanism has expected approximation
ratio greater than 5/4 − δ, for any δ > 0. Let I and I ′

be two instances on U = {a, b}. Bidder 1 is interested in
S1 = {{a, b}, {b}}, and bidder 2 is interested in S2 = {{a}}.
In both, the valuation of bidder 2 is v2({a}) = 1. The valu-
ation of bidder 1 is v1({a, b}) = 2 and v1({b}) = 0 in I, and
v′1({a, b}) = 2 and v′1({b}) = 2 − δ in I ′. Each instance oc-
curs with probability 1/2, and the expected maximum social
welfare is (5− δ)/2. Let algorithm A, applied to instance I,
allocate {a, b} to bidder 1 and ∅ to bidder 2. Then, by Theo-
rem 3.2, since A is a deterministic truthful mechanism, when
applied to instance I ′, it must allocate {a, b} to bidder 1 and
∅ to bidder 2. Therefore, the expected social welfare of A is
2, and its expected approximation ratio is (5−δ)/4 > 5/4−δ.
If A, applied to I, does not allocate {a, b} to bidder 1, its
expected social welfare is at most (4− δ)/2, and its approxi-
mation ratio is (5−δ)/(4−δ) > 5/4−δ, a contradiction.

We conclude with a weaker lower of 1.09 for the larger
class of randomized truthful-in-expectation mechanisms.

Theorem 5.3. There are no randomized mechanisms
that are truthful in expectation and have approximation ratio
less than 1.09 for CAs with known 2-minded bidders.
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5.1 Priority Mechanisms
Next, we consider mechanisms that operate according to

the priority framework (see e.g., [1]). We start with any
priority mechanism A that takes as input (and make irrevo-
cable decisions about) elementary bids. Namely, A operates
on a sequence of triples (i, S, vi(S)), where i is the bidder, S
is one of i’s demanded sets, and vi(S) is i’s valuation for S.

Theorem 5.4. Let A be a truthful priority mechanism
with verification and no money for CAs with known k-
minded bidders. If A processes elementary bids, the approx-
imation ratio of A is greater than (1− δ)d, for any δ > 0.

The proof of Theorem 5.4 adapts that of [1, Theorem 3].
With a minor change in the proof, Theorem 5.4 applies to
the special case of 2-minded bidders. Thus, exploiting in-
stances with d = m, we obtain a lower bound of (1−δ)m, on
the approximation ratio of any truthful priority mechanism
for known 2-minded bidders that processes elementary bids.

Next, we consider any priority mechanism A that takes
as input k-minded bidders, i.e., A operates on a sequence of
pairs (i, vi), where vi is the valuation function of bidder i.
Such a priority mechanism A is potentially more powerful
than a priority mechanism processing elementary bids, since
when A decides about the set allocated to each bidder i, it
has full information about i’s valuation function. The proof
of the following adapts the proof of [1, Theorem 4].

Theorem 5.5. Let A be a truthful priority mechanism
with verification and no money for CAs with known 2-
minded bidders. If A processes bidders, the approximation
ratio of A is greater than (1− δ)m/2, for any δ > 0.

5.2 Discussion
A step that seems necessary for O(

√
m)-approximation for

CAs is that the algorithm compares the social welfare and
chooses the best of two extreme solutions: the most valuable
set demanded by some bidder and a solution consisting of
many small sets with a large total valuation. Otherwise,
we cannot achieve an approximation ratio of o(m) even for
the simple case where bidder 1 is double-minded for U =
{a1, . . . , am} with valuation x ∈ {1 + ε,m2} and for the
good a1 with valuation 1, and each bidder i, 2 ≤ i ≤ m, is
single-minded for the good ai with valuation 1. In fact, this
is one of the restrictions of priority algorithms exploited in
the proofs of the lower bounds of Ω(m) above.

On the other hand, comparing the social welfare of these
two extreme solutions is also sufficient for an O(

√
m)-ap-

proximation, in the sense that taking the best of (i) the most
valuable set demanded by some bidder, and (ii) the solution
of Algorithm 3, if we only allocate sets of cardinality at most√
m, is an O(

√
m)-approximation (see Theorem 4.9).

For CAs without money, it seems virtually impossible to
let a deterministic mechanism truthfully implement a com-
parison between the social welfare of those extreme solu-
tions. This is because the only way for a deterministic
mechanism to make sure that the bidder with the maxi-
mum valuation does not lie about it is to allocate her most
valuable set to her, so that verification applies to this partic-
ular bid (see also how Algorithm 2 learns about vmax). But
this leads to an approximation ratio of Ω(m). In fact, this is
the main obstacle towards a deterministic truthful O(

√
m)-

approximate mechanism for CAs with k-minded bidders. So,
we conjecture that there is a lower bound of Ω(m) on the
approximation ratio of deterministic truthful mechanisms.
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