
Multi-Robot Adversarial Patrolling:
Facing Coordinated Attacks ∗

Efrat Sless
Department of Computer

Science
Bar Ilan University, Israel

efrat.slas@live.biu.ac.il

Noa Agmon
Department of Computer

Science
Bar Ilan University, Israel
agmon@cs.biu.ac.il

Sarit Kraus
Department of Computer

Science
Bar Ilan University,Israel

sarit@cs.biu.ac.il

ABSTRACT
The use of robot teams is common for performing patrol tasks,
in which the robots are required to repeatedly visit a target area
(perimeter, in our case) controlled by an adversary, in order to de-
tect penetrations. Previous work has focused on determining the
optimal patrol algorithm when facing a general adversary that tries
to penetrate once through the patrol path. There, the robots’ goal is
to detect penetrations, i.e., the robots do not change their behavior
once a penetration is detected. Requiring the robots to physically
inspect penetration attempts can have far reaching consequences
on the performance of the patrol algorithm. Specifically, it cre-
ates vulnerability points along the patrol path that a knowledgeable
adversary can take advantage of. In this work we investigate the
problem of coordinated attacks, in which the adversary initiates two
attacks in order to maximize its chances of successful penetration,
assuming a robot from the team will be sent to examine a penetra-
tion attempt. We suggest an algorithm that computes the optimal
robot strategy for handling such coordinated attacks, and show that
despite its exponential time complexity, practical run time of the
algorithm can be significantly reduced without harming the opti-
mality of the strategy.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms

Keywords
Agent Cooperation::Multi-robot systems; Agent-based system de-
velopment::Security aspects of agent systems;

1. INTRODUCTION
The problem of multi-robot patrol is well known in the robotic

and agent community. Given an area and a team of robots, the
robots should repeatedly visit the area in order to either maximize
point-visit frequency criterion (e.g., [4, 5]) — frequency based pa-
trol — or maximize the robots’ chance of detecting penetrations
through the patrol path (e.g., [1, 3]) — adversarial patrol. In this
paper we concentrate on the latter, i.e., the robots’ goal is to detect
penetrations that are controlled by an adversary, in our case around
a perimeter.
∗This work was supported in part by ERC grant #267523.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and
Michael Huhns (eds.), Proceedings of the 13th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Previous work on multi-robot patrol has concentrated mainly on
the detection problem [1, 3, 13]. There, the robots’ task is to detect
penetrations, i.e., once a penetration is detected, the robots report it
and move on. The robots’ world model does not change, thus their
behaviors do not change. Therefore, the efficiency of the patrol
strategy remains the same for any number of penetration attempts
— coordinated or uncoordinated. However, in many realistic set-
tings, the robot that detects the penetration has to handle it as well,
for example by confining the penetrator or examining the penetra-
tion using additional sensors. Thus the penetration will necessar-
ily influence The remaining team’s ability to handle them, which
makes the patrolling team more vulnerable to coordinated attacks.

When the adversary initiates a coordinated attack, it will try to
penetrate through one location, and then (once a robot is removed
from the team in order to handle that penetration attempt) it will
try to penetrate again, this time through vulnerability points gen-
erated by the need to handle the first penetration. We distinguish
between the behavior of the robots in three different phases: (Phase
I) the steady-state prior to the extraction of the robot for handling
the penetration, i.e., patrolling by k robots (Phase II) The reorgani-
zation phase: the team transfers from having k patrolling robots to
having k−1, and (Phase III) The steady-state of patrolling by k−1
robots. Agmon et al. [1] established the optimal patrol algorithm
for phases I and III. However they did not consider handling the
penetration attempts and thus did not need to reorganize the robots.
In this paper we examine the optimal behavior during the reorga-
nization phase (Phase II), in which the robots are most vulnerable
to additional attacks. One of the difficulties in finding the robots’
strategies in the this phase is that the robots are not symmetric; one
needs to compute specific strategies for each agent. This is in con-
trast to the steady phase where all agents follow the same strategy.

As the vulnerability points of the patrolling robots exist during
the reorganization phase, a natural solution would be one that min-
imizes the duration of this phase. Surprisingly, we prove that this
is not true. On the contrary, the shortest reorganization phase is
inevitably deterministic and thus most vulnerable. Moreover, we
show that as the reorganization time grows, the minimal probability
of penetration detection along the perimeter grows until it levels up
with probability of penetration detection of the steady state. There-
fore, this allows us to focus our attention on computing an optimal
strategy and limit the computation time.

In this paper we propose an algorithm that determines the opti-
mal patrol strategy for the robots during the reorganization phase.
The strategy is based on providing a probability distribution over
all possible paths for each robot, leading it from its initial position
to its final position (preparing for the next steady state). Unfortu-
nately, the number of such paths is exponential in the size of the
perimeter. However, we have shown that it is unnecessary to ex-
amine all possible paths, but only a small fraction of them, leading

1093

to another significant drop in the computation time of an optimal
solution.

2. RELATED WORK
The problem of multi-robot patrolling has received considerable

attention in the literature during the past decade. The problem has
been investigated in different areas, for example perimeter patrol
[1], patrol along an open fence [6], a 2D continuous environments
[5] and graphs [4, 9, 10]. The problem has also been examined
with respect to two different perspectives of the patrolling robots:
adversarial patrol [1, 3, 11], where the robots’ goal is to detect pen-
etrations controlled by an adversary, and frequency-based patrol [4,
6, 9, 10], where the robots’ goal is to optimize some point-visit fre-
quency criterion, for example by maximizing the average frequency
along the area. Another perspective is the game-theoretic domain
[3, 13], which refers to a single robot in the patrol, but they also for-
mulated their problems as non-linear optimization problems. An-
other approach is modeling the problem as a Stackelberg game, as
in [14] which confronted a similar problem. They introduced a
method of representing the exponential number of paths. However,
in our work we assume that the penetration is not instantaneous,
therefore we cannot use this representation. Moreover, they assume
that the contribution of multiple patrol units covering the same edge
is additive, thus the problem can be formulated as a linear program-
ming problem, whereas in our settings multiple robots covering the
same segment contribute the same as a single robot.

In this paper we concentrate on the problem of multi-robot adver-
sarial perimeter patrol. In these types of problems, the adversarial
model commonly depends on the adversarial knowledge. An adver-
sary with full knowledge was considered in [1, 3], and an adversary
with partial information was considered for example in [12].

In [2] it was shown that when the adversary has no knowledge
about the patrolling robots and acts randomly, an algorithm maxi-
mizing the probability of penetration detection is the one that max-
imizes the point-visit frequency. Yet, to the best of our knowledge,
the problem of coordinated attacks, i.e., handling more than one
attack, has not been considered in previous.

The problem of handling events in frequency based patrol was
considered, among others, by Elmaliach et al. [5] and by Fazli and
Mackworth [7]. Jensen et al. [8] examined the problem of remov-
ing robots for re-charging. These events are predictable, and can be
taken into consideration in advance as opposed to adversaries’ at-
tacks. Elmaliach et al. [5] considered the removal of robots due to
failure, where they focused on minimizing the reorganization time.
In all these cases, the robots’ goal is to adjust to the new state with
one less robot as quickly and efficiently as possible, by adopting a
deterministic behavior. This behavior is necessarily vulnerable to
additional penetration attempts by a knowledgeable adversary, thus
cannot be used in our case.

3. PROBLEM SETTINGS
We are given k homogeneous robots R = {r0, . . . , rk−1} that

are required to patrol along a perimeter, i.e., a cyclic path around
a closed polygon. The fence is partitioned into N segments S =
{s0, . . . , sN−1}, with endpoints ep0, . . . , epN−1, where each robot
travels through one segment per time unit. si starts at epi and ends
at epi + 1, The length of the segments and the robots’ speed can
differ from one segment to another, as long as the motion time re-
quired to travel through the segments is equal. Each robot can ei-
ther move forward, backwards or stay put, at every step, where
turning around has an associated cost, modeled in time. We denote
the number of time units it takes the robots to turn around by τ .
When an attempt to penetrate is detected, either by a robot or other

sources, a robot must inspect it until the threat is removed, thus the
robot is removed from the team. During that time it is still able to
observe part of the perimeter (this value is quantified in Section 4).

3.1 Adversarial Model
The system consists of two coordinated adversariesA0, A1 (equiv-

alent to one adversary initiating two attacks). Their joint goal is for
at least one of them to successfully penetrate the perimeter, that
is, without being detected by the robots. Both adversaries earn the
same utility if they manage to achieve their joint goal. We assume
the time it takes for each one of the adversaries to penetrate lasts
t time units, during which it may be detected by a robot passing
through the segment in which it resides in. In order to maximize
their chances of successful penetration, the adversaries initiate a
second penetration attempt if the first one is detected. We consider
two cases for the second penetration with respect to the detection
of the first attack:

1. Known penetration period. Second penetration initiated at
some known time, or bounded time [x1, x2] after the first
penetration is detected.

2. Unknown penetration time. Second penetration is initiated
at an unknown time.

We consider a strong adversarial model, in which the adversaries
have full knowledge of the patrol strategy and the robots’ positions
and a-priory decide the segments to penetrate and the timing of both
attacks.

3.2 Patrol Task
We define the Probability of Penetration Detection in a segment

si, ppdi, as the probability that an adversary trying to penetrate
through si during t time units will be detected by some robot pass-
ing through si during that time period. We would like to find an op-
timal patrol algorithm for the robot team when confronting a strong
adversary that will necessarily penetrate through the segment with
minimal ppd, i.e., an algorithm that maximizes the minimal prob-
ability of penetration detection throughout the perimeter. Agmon
et al. [1], proved that the optimal patrol algorithm that maximizes
the minimal ppd along the perimeter for a team of k robots is one
that requires the robots to be spread out uniformly (in time) along
the perimeter , i.e., with a distance of dk between every two con-
secutive robots. In their work, they define a nondeterministic patrol
framework in which, at each time step, the robots either continue
straight with a probability of p or turn around with a probability of
1−p. Based on this framework, it is possible to find, in polynomial
time, the optimal patrol strategy (characterized by the value p). We
therefore distinguish between the behavior of the robots in three
different phases: Phase I- the steady-state prior to the extraction of
the robot for handling the penetration, i.e., patrolling by k robots;
Phase II- the reorganization phase, where the team’s composition
changes from k patrolling robots to k − 1 patrolling robots; and
Phase III- the steady-state of patrolling by k − 1 robots. Since the
optimality of the patrol strategy is established in [1] for phases I
and III,in this paper we focus our attention on the reorganization
phase. We therefore handle the following problem:
Given k robots patrolling around the perimeter, where one robot is
extracted from the team in order to handle a penetration at location
s, determine the optimal behavior for the robots that will maximize
the minimal probability of penetration detection along the perime-
ter.

1094

4. THE REORGANIZATION PHASE
When a robot is extracted from the team to handle the first pen-

etration, we wish to reorganize the remaining k − 1 robots such
that they will again be organized uniformly around the perimeter,
to achieve optimal behavior [1], while the extracted robot remains
close to the location of the initial penetration. The set of final po-
sitions of the robots is the set of positions in which all robots are
placed uniformly along the perimeter. First, we are interested in
determining the amount of time allocated for the reorganization
phase, i.e., the time it will take the robots to reach their final po-
sitions. The duration of the reorganization phase is denoted by ρ.
Note that the length of the path between a robot’s current position
and its final position varies from one robot to the other, and depends
on its location relative to the penetration point (see Figure 1). A
naive approach would be for each robot to go straight to its final
position and wait until the reorganization phase ends, thus mini-
mizing the time of the reorganization. However such an approach
will create vulnerability points as there are segments that will not
be visited during t time units, thus a knowledgeable adversary will
manage to penetrate through those weak points. In the example in
Figure 1, all points between the final positions of the robots and
the current positions of the adjacent robots will not be visited dur-
ing the reorganization phase using this naive algorithm. Thus these
points can be chosen for penetration by the adversary. We are there-
fore interested in a non-deterministic algorithm that will guarantee
that for each segment si around the perimeter, ppdi > 0 during the
reorganization phase.

Determining final positions.
It is easy to see that as ρ grows, each robot has a greater range

of segments it can visit during the reorganization phase, thus ppdi
potentially increases. Hence, theoretically, we would like ρ to have
large values. However, this conflicts with the fact that we wish to
minimize the reorganization phase length since an optimal patrol
is achieved when all robots are organized uniformly. In order to
find the ρ value that balances this trade-off, we start by finding the
final positions for all the robots such that the reorganization time
is minimized, i.e., the maximal distance traveled by some robot
is minimized. We assume, without loss of generality, that r0 is the
extracted robot. The uniform distance betweenm robots is denoted
by dm = N

m
. We also use Di to denote the path length for robot

i, 1 ≤ i ≤ k − 1 from its current position to its final position
(which provides the minimal path length). The sign ofDi indicates
the direction of the path: + for counter clockwise movement, - for
clockwise. We begin by proving the following supporting lemma
in order to find the final positions (by calculating the values of Di
’s). Let Dmax := max1≤i≤k−1|Di|.

LEMMA 1. For k robots that are spread uniformly around the
perimeter with a distance of d = N/k segments between every
two consecutive robots, once robot r0 is removed from the system,
Dj = D1 − j−1

k−1
dk for 2 ≤ j ≤ k − 1, and Dmax = D1 =

1
2
k−2
k−1

dk.

PROOF. After reorganizing the distance between robot rj ,rj−1,
j=2..k − 1 is dk + Dj−1 − Dj . The robots are distributed uni-
formly along their final positions, hence they are within a distance
of k

k−1
dk from each other, therefore dk + Dj−1 − Dj = k

k−1
dk

, and we find that Dj = Dj−1 − 1
k−1

dk. It is easy to verify that
Dj = D1 − j−1

k−1
dk.

In order to show that the maximal value of Dj (Dmax), we no-
tice that there are two robots r1, rk−1, within a distance of 2dk,
and the rest of the robots remain within a distance of dk. Since
2d ≥ k

k−1
dk for all k ≥ 2, the minimal duration of reorganizing is

achieved when those two robots will head in opposite directions in
order to reduce the distance between them.

Thus D1 + Dk−1 = 2dk − k
k−1

dk = k−2
k−1

dk holds. The min-
imum path length is achieved when D1 = Dk−1 = 1

2
k−2
k−1

dk.
Hence the minimum of the longest path length for all robots, de-
noted by min, satisfies that min ≥ 1

2
k−2
k−1

dk. The maximum
of |Dj |, is achieved at the boundary points j = 2, k − 1 and
|D2| < |D1| = |Dk−1| holds, therefore Dmax = max|Dj | =
D1 = Dk−1 = 1

2
k−2
k−1

dk. Since Dmax is the longest path length it
holds that min ≤ Dmax, hence min = Dmax.

Figure 1: Illustrating of the deterministic reorganization phase.
The current positions of the robots are represented by the black
points. Each robot goes straight to its final position. The unvisited
segments are vulnerable to attacks.

Following Lemma 1, we can calculate the values of Dj as fol-
lows:

Dj = D1−
j − 1

k − 1
dk =

1

2

k − 2

k − 1
dk−

j − 1

k − 1
dk =

1
2
k − j
k − 1

dk (1)

The current position of ri, i = 1 . . . k − 1, is i · dk, thus we can
calculate the final position of ri (which is at a distance of Di from
its current position) as follows:

idk −Dj = idk −
1
2
k − i
k − 1

dk =
kdk · (i− 1

2
)

k − 1
(2)

Similarly we can compute the final position of each robot given
its initial position, and the penetration segment.

Monitoring requirement from the extracted robot.
We are interested in visiting all segments during all periods of

t time units. We wish to examine the range of segments close to
the penetration location that cannot be visited during that time by
the remaining robots, but can be observed by the extracted robot,
or any other sensing element. The number of segments that cannot
be visited during a period of t time units starting from t1 equals
2(dk − (t1 + t)). This is due to the fact that the number of seg-
ments between r1, rk−1 is 2dk. During t time units, r1 can visit
at most t of the segments between r1, rk−1. The same holds for
rk−1. Therefore the number of remaining unvisited segments is
2(dk − (t1 + t)). These are the segments that need to be moni-
tored, either by the extracted robot, or other sensing elements (se-
curity cameras for instance).

5. PRELIMINARIES
Even after determining the final positions, there are still many

ways each robot can travel from its current position to its final po-
sition during ρ time units. A deterministic approach is no good
against a full-knowledge adversary. Unlike the steady state, where
the world is symmetric, enabling each robot to execute the same

1095

patrol strategy, in our problem there is no symmetry thus it is nec-
essary to calculate a strategy for each of the robots. Randomizing
at each endpoint does not guarantee the robot will arrive to its final
position at the end of the reorganization phase. Therefore we ran-
domize over the possible paths that start at the current location of
the robots, and end at the final position after ρ time units.

Modeling the problem by a graph.
Similar to [1], we model the problem as a directed graph in or-

der to capture the directionality of the robots’ movement (facing
forward is different than facing backward, considering the time τ
it takes the robots to turn around). The graph G is constructed as
follows (see the illustration in Figure 2):
For each pair in the original problem of end point and direction we
construct a vertex. To take into account the cost of turning, we con-
struct chains of length τ between vertices with different direction.
V = {v|v = (epi, direction)}
v = (epi, forward) v′ = (epi, backward)
C ={ chains with length of τ between u, u′ and u′, u| u is an
endpoint}
E ={(v, u), (u′, v′)|u, v are endpoints of the same segment}∪C
W : V xV → R
W (u, v) = 1 (u, v) ∈ E
W (u, u′) = W (u′, u) = τ the cost of weights between u, u′

Algorithm 1 calculates the number of paths of length L between
two given endpoints in a given direction, using the adjacency matrix
of G, as defined in [11]. u,v are the corresponding vertices to the
directed endpoints.

Algorithm 1 NumberOfPaths(u, v,L)
1: Construct G
2: A← Adjacency matrix of G
3: Return AL(u, v)

Figure 2: Example of a weighted graph that takes into account
the cost of turning, τ .

5.1 Algorithm For Finding All Paths
The behavior of the robots during the reorganization phase has

to be random in order to handle a knowledgeable adversary. In
this case, we randomize over the possible choices of paths leading
the robots from their current position to their final position during
ρ time units. First, we need to find the possible paths for each
robot before further evaluation. Algorithm FindPaths receives
the current position v and the final position goal of a given robot,
and finds all paths with length of ρ. The algorithm considers the
modeled graph G, the current position and direction, encompassed
by v, and the final position and direction encompassed by goal.

path and cost are the current path and its cost (initially empty and
0). The results are stored in paths (initially empty).

Algorithm 2 FindPaths(G, v, goal, ρ, path, cost, paths)
1: add v to path
2: if cost = ρ then
3: add path to paths
4: Return
5: if cost > ρ then
6: Return
7: for each v′ in neighbors(v) do
8: if numberOfPaths(v′, goal, ρ− (cost+W (v, v′))) > 0

then
9: FindPaths(G, v′, goal, ρ, path, cost +

W (v, v′, paths))
10: return paths

The algorithm recursively (DFS1 based) generates the paths, each
step continues only to branches that can yield a valid path.

The complexity of NumberOfPaths is polynomial in N , i,e,
O(Nc) for some fixed c. The time complexity of FindPaths is
linear in output size, and is O(Nρ+c), since the number of paths
as calculated by numberOfPaths is Aρ(v, goal), where A is the
adjacency matrix of graph G. We can bound this value by defining
matrix BNxN such that Bij = 1, i = 1..N, j = 1 . . . N . Since
0 ≤ Aij ≤ 1, i = 1 . . . N, j = 1 . . . N . It holds that 0 ≤ Aij ≤
Bij , i = 1 . . . N, j = 1 . . . N and thusAρij ≤ B

ρ
ij , andBρij = Nρ.

5.2 ppd Computation
The values of the ppd depend on the probability of each path to

be chosen. Suppose that for each robot we are given a set of paths
and a distribution over this set, Algorithm calcPPD computes the
values of ppd’s, at a given time and illustrates the influence of the
distribution on the ppd values.
Input for calcPPD:

problem settings: S := segments set,R := robots set
paths := set of all paths for all robots: {pathr}, where pathr

is the set of possible paths for robot r
path[t1 : t2] := sub-path of path between t1, t2
ta := inspected time of penetration initiation
P := The sets of distribution over paths for all robots, {Pr}

where Pr is the distribution of robot r over pathr .
probr(s) := the probability for robot r to visit segment s.

Result: ppd[ta]

Algorithm 3 CalcPPD(paths, t, S,R, ta, P)

1: for each s in S do
2: ppd(s)← 0
3: for each r in R do
4: probr(s)← 0
5: for each path in pathsr do
6:

I(s, r, path)[ta]←
{

1 path[ta : ta + t] visits s

0 otherwise

7: probr(s)← probr(s) + Pr(path) · I(s, r, path)[ta]
8: ppd(s)← ppd(s) · (1− probr(s)) + probr(s)
9: return ppd

1Depth-first search (DFS) is an algorithm for traversing or search-
ing tree or graph data structures. One starts at the root (selecting
some arbitrary node as the root in the case of a graph) and explores
as far as possible along each branch before backtracking.

1096

probr(s) =
∑
path Pr(path) · I(s, r, path)[ta], i.e, the prob-

ability that r will visit segment s between [ta, ta + t]. Next we
prove a lemma that will assist us in iteratively calculating the ppd
for each segment, iterating the contribution of each robot.

LEMMA 2. Assume thatF1(s) = probr1(s), and thatFj+1(s) =
Fj(s) · (1 − probrj+1(s)) + probrj+1(s), 1 ≤ j ≤ k − 2 then
ppd(s) = Fk−1(s).

PROOF. We prove by induction that Fj(s) = 1 −
∏j
l=1(1 −

probrl(s)) This statement holds for F1(s); We will now prove that
if it holds for Fj(s) it holds for Fj+1(s) Fj+1(s) = Fj(s) · (1 −
probrj+1(s)) + probrj+1(s) = (1 −

∏j
l=1(1 − probrl(s)))(1 −

probrj+1)+probrj+1(s) = 1−probrj+1(s)−
∏j+1
l=1 (1−probrl(s))+

probrj+1(s) = 1−
∏j+1
l=1 (1− probrl(s)), as required.

It holds that ppd(s) = 1 −
∏k−1
l=1 (1 − probrl(s)), which is

the complement of the probability that none of the robots will visit
segment s. Therefore ppd(s) = Fk−1(s).

6. BOUNDED PENETRATION PERIOD
In this section we consider the case where the time of the second

penetration, denoted by ta, is bounded, and formally that x1 ≤
ta ≤ x2 for some known x1, x2.

As stated in the preceding sections, our goal is to find the mini-
mal ρ that satisfies the trade-off between increasing the reorganiza-
tion time that will increase the ppd, and minimization of the reor-
ganization time (since the optimal patrol algorithm for k−1 robots
is known to have the robots placed uniformly along the perimeter).
We therefore want to find the minimal ρ value that provides the
maxminppd between [x1, x2].

We provide a series of constraints regarding the value of ρ. First,
it is necessary that ρ > t, otherwise there are segments that will not
be visited during a period of t time units from the beginning of the
reorganization phase.

The existence of a path from a current position to the final po-
sition that visits a segment guarantees that if there is a probability
greater than zero of choosing it, then the probability of penetration
detection at that segment is greater than zero.

As stated in previous sections, using a greater ρ improves the
results. Since at some point increasing ρ yields the same sub-paths
of a fixed length, the results will remain the same. We proceed to
bound this point in time, and use b[x2] to denote the bound. That
means, using ρ = b[x2] yields the maxminppd, and any greater ρ
yields the same. For that we denote by |path| the length of path.

LEMMA 3. b[x2] := 2x2 + 2t+Dmax + τ is a bound for the
minimal ρ such that maxminppd remains the same for every ρ̃ > ρ.

PROOF. In order to prove that b[x2] is a bound, it is sufficient
to prove that: {path[x1 : x2] : |path| = ρ} = {path[x1 : x2] :
|path| = b[x2]} for ρ ≥ b[x2] which means that sub-paths of
length x2 from all paths of length ρ are the same as sub-paths of
paths of length b[x2], hence they have the same ppd. A path of
length x2 + t can be distant at most x2 + t+Dmax from its final
position. In order for a path of length ρ to be of that distant, ρ needs
to be greater than 2x2 + 2t+Dmax + τ .

Optimization problem.
After setting all preliminaries, we can formulate the problem as a

QCP (quadratic constraint problem). The formulation considers the
contribution of each pathi of robot j to segment s and maximizes
the minimal value of ppd’s of all segments. The decision variables
are the probabilities of choosing each path Pr(path), and extra

variables to formulate the problem as a QCP. The paths for each
robot are computed by: pathr =FindPaths(G, currentPos,
finalPosition(currentPos), ρ, [], 0) The constraint of
maxmini ppdi is equivalent to stating that {maxm|ppdi ≥ m}.

The ppd values are computed iteratively using Lemma 2, to gen-
erate quadratic constraints, instead of higher order.
max m
S.T
s ∈ S, ta ∈ [x1, x2] ppds[ta] = calcPPD(paths, t, S,R, ta,
. {Pr})

r ∈ R,
∑
path Pr(path) = 1

∀path, r ∈ R Pr(path) ≥ 0

s ∈ S, ta ∈ [x1, x2] ppds[ta] ≥ m

Patrol algorithm.
The final algorithm is PatrolRearrange which computes the op-

timal distribution and randomizes the path for each robot.

Algorithm 4 PatrolRearrange(R,S, {initr}, t, τ, x1, x2)

1: construct G
2: for each r in R do
3: goal← CalcF inalPosition(initr)
4: ρ←max{2t+ 2x2 +Dmax + τ, k

k−1
d+ τ}

5: pathsr ← FindPaths(G, initr, goal, ρ, [], 0)
6: Pr ← solve(paths, k, n, x1, x2)
7: return random path from pathsr with distribution Pr

The time complexity of the problem is the complexity required to
solve a non-linear optimization problem withO(k·N2t·(x2 − x1))
constraints and variables. This differs between solvers. The call to
solve uses a solver to solve the non-linear optimization problem,
which takes into consideration the paths of all robots, the number
of robots, the number of segments, and the inspected area.

6.1 Lower bound for ppd values
In the following lemma we prove a lower bound on the mini-

mal probability of penetration detection guaranteed by Algorithm
PatrolRearrange during the reorganization phase. This lower bound
is relatively high, and the implied “cost” to the system is discussed
in the next section.

LEMMA 4. If ta = x, during the reorganization phase for some
known x then the ppd values during the first t time units in the
reorganization phase guaranteed by performing PatrolRearrange
satisfies that ppdl = 0.5 for l = du(k)− t . . . n− (du(k)− t).

PROOF. Each robot has a path where during t time units, it visits
segments that are at a distance of t forward and a path that visits
backwards. Since 2t ≥ d + τ , a pair of adjacent robots has paths
that cover all segments between them during t time units. Assume
we determine two possible paths for each robot: one in which the
robot visits the segments forward to its position, and one that it
visits segments backward from its position. There exist such paths
for each robot such that any two robots ensures that all segments at
a distance of d between them are covered. If each of these two paths
is chosen with a probability of 0.5 for each robot, then the values
of ppd’s in this example are at least 0.5, since all segments that
are at a distance of t are covered. This implies that the resulting
ppd’s from solving the optimization problem necessarily satisfy
that ppdl ≥ 0.5 for l = (du(k)− t) . . . n− (du(k)− t).

1097

Figure 3: (a) represents the most distant positions of rj after
ta ≤ ρ time units (during reorganization). (b) represents the most
distant positions of rj during the remaining period of t (after the
reorganization phase).

6.2 Unknown Penetration Time
In this section we consider the time of the second penetration

attempt to be unbounded. In the previous case we maximized the
minimal ppd during a bounded period. Which enabled the selec-
tion of a ρ that results the optimal solution, even higher than the
steady state. This is due to the fact that we overlooked the seg-
ments afterwards.

As an example, consider the case in which N = 84, k = 7 and
t = 8, ta = 0. In this case, ρ0 = 15, which means that although we
handle the first t time units, the remaining ρ0−t = 7 time units are
overlooked. This allows the robots to be very well prepared against
a coordinated attack, but not against general attacks that may occur
at any time. Following this example, the minimal ppd in the steady
state for k = 7 robots is 0.15, the value for k − 1 = 6 robots is
0.05, and during the (first t time units of the) reorganization phase
is 0.5. However, if a penetration is initiated after 12 time units (and
not at time 0), the minimal ppd drops to 0.

We start by proving that there are points of vulnerability during
the reorganization phase, in every possible choice of a single ρ for
reorganization. In the bounded case we could increase ρ in order
to avoid them, because the penetration time was bounded. The
problem arises when the penetration can occur at any time during
the reorganization phase, even during those vulnerability points.
Therefore, increasing ρ in this case would not solve the problem.

LEMMA 5. For ρ − t ≤ ta ≤ ρ, there exists a segment i such
that ppdi[ta] = 0 for ρ− 1

2
dk−1 ≤ ta ≤ ρ− t+ 1

2
dk−1.

PROOF. At time ta each of rj is at a distance of ρ− ta from its
final position. During the remaining t − (ρ − ta) time units, the
robots are in the steady phase, and each rj can be at a distance of at
most t − (ρ − ta) from its final position. Thus during t time units
each robot is at distance of at mostmax(ρ− ta, t− (ρ− ta)). This
is illustrated in Fig. 3 If none of the segments is overlooked then
each pair of robots cover all of the segments between their final
positions, at a distance of dk−1. Thus it is essential that 2max(ρ−
ta, t − (ρ − ta)) ≥ dk−1, which implies either ta ≤ ρ − 1

2
dk−1

or ta ≥ ρ − t + 1
2
dk−1, meaning that when ρ − 1

2
dk−1 ≤ ta ≤

ρ− t+ 1
2
dk−1 segments with ppdi[ta] = 0 exist.

The above lemma implies that if the opponent has full knowledge of
the patrol scheme, and of ρ in particular, it can choose to penetrate
during that time and it is guaranteed to succeed. As a corollary ρ
must be randomized in order to ensure ppdi[ta] 6= 0 for all ta.

Since all robots must end the reorganization phase at the same
time, all robots must draw paths for the same ρ. This means that
each robot can draw a path only after a ρ is drawn.

Optimization Problem.
Similar to the first case of bounded time, we wish to formulate

the optimization problem in this case. As illustrated by the follow-
ing example in Fig. 4 calculating the optimal paths probabilities for
each ρ and combining them together might yield a solution that is
worse than computing all probabilities together. Therefore all paths
of different ρ’s must be considered together. The set of multiple ρ’s
is denoted by Γ.

Figure 4: Assuming there are four paths with ppd’s as described
above, for some two segments. Each of path3, path4 has a
smaller maxminippdi than path1, path2. Yet, when maximizing
the combination of each pair maxminippdi of path3 and path4

is greater.

max m
S.T
s ∈ S, ta ∈ [x1, x2], ppds,ρ[ta] = calcPPD(pathsρ, t, S,R
. , ta, {Pr})

r ∈ R,
∑
path Pr,ρ(path) = 1

∀path, r ∈ R Pr,ρ(path) ≥ 0∑
ρ qρ = 1

∀path, ρ ∈ Γ qρ(path) ≥ 0

s ∈ S, ta ∈ [x1, x2] totalppds[ta] =
∑
ρ ppds,ρ[ta]

s ∈ S, ta ∈ [x1, x2] totalppds[ta] ≥ m
The optimal patrol algorithm is an extension of PatrolRearrange.

After solving the optimization problem, first a ρ is drawn with prob-
ability of qρ, and then a path with length ρ is drawn for each robot.

6.3 Bounding the reorganization time
In the previous section we proved a bound for the value of ρ that

yields the maximum minimal ppd. In this section we prove that
there exists a ρ that bounds the improvement towards the maxminppd.

LEMMA 6. When maxΓ → inf , the solution of the optimiza-
tion problem converges to the maxminppd of the reorganization
phase.

PROOF SKETCH. The solution is monotonic with respect to ρ,
since if a larger ρ does not improve the results it will have a proba-
bility of 0. In addition the solution is bounded (it represents proba-
bility). Therefore the process of adding more ρ’s converges. Due to
the fact that every possible path is contained in {paths}ρ → inf ,
the optimal paths for the reorganization are also contained in this
set. Consequently a solution to an optimization problem contain-
ing these paths will yield the maxminppd of the reorganization
phase.

1098

The following corollary states the existence of a bound for adding
larger ρ’s.

Figure 5: Probability distribution over ρ’s in optimal solutions
with ε = 0.01, for the following settings: (1) k = 8, d = 7, t = 5
(2) k = 4, d = 6, t = 5 (3) k = 6, d = 5, t = 4 (4) k = 3, d = 8,
t = 7

COROLLARY 1. For every ε > 0 there exists a ρ0 such that
adding any ρ > ρ0 would not change more than ε of the solution.

PROOF. This is proven by using Cauchy’s criterion on previous
lemma.

This is demonstrated in Fig. 5, which shows the finite bound for
achieving the optimal ppd for a certain ε, and that lower ρ values
have a higher probability.

6.4 Reducing the Problem Size
So far, our suggested algorithm considers every possible path for

the optimization problem. Not only does this mean a very large
input is considered, it is also unnecessary. Some of these paths
clearly have less contribution than others, and there is no need to
consider them in the optimization problem.

Definition 1. A path path1 dominates path2 if I(s, r, path1)[ta]
≥ I(s, r, path2)[ta], for every s ∈ S, 0 ≤ ta ≤ ρ.

Let Pr be a distribution function over the paths for robot r.
We wish to examine the effect of transferring the probability from
path2 to path1 that dominates it. We denote the resulting distribu-
tion function by P̃r , and the probability of robot r to visit segment
s according P̃r by p̃robr(s).

LEMMA 7. If path1 dominates path2 then p̃robr(s)[ta] ≥
probr(s)[ta], for every s ∈ S, 0 ≤ ta ≤ ρ.

PROOF. p̃robr(s)[ta]− probr(s)[ta] =∑
path

˜Pr(path) · I(s, r, path)[ta]-∑
path Pr(path) · I(s, r, path)[ta] = (Pr(path1) + Pr(path2) ·

I(s, r, path1)[ta]) - Pr(path2) · I(s, r, path2)[ta]
= (I(s, r, path1)[ta]−I(s, r, path2)[ta])·Pr(path2)+Pr(path1)·
I(s, r, path1)[ta]. Since path1 dominates path2 the above expres-
sion is greater than 0.

COROLLARY 2. If path1 dominates path2, then calcPPD(

paths, t, S,R, ta, P̃r) ≥ calcPPD(paths, t, S,R, ta, Pr).
PROOF. The difference between the ppd’s equals (1−

∏
l(1−

p̃robl(s))) − (1 −
∏
l(1 − probl(s))) =

∏
l(1 − probl(s)) −∏

l(1 − p̃robl(s)) =
∏
l6=r(1 − probl(s))(1 − probr(s) − (1 −

p̃robr(s))) =
∏
l6=r(1 − probl(s))(p̃robr(s) − probr(s)). By

Lemma 7 the above expression is greater than 0.

By Corollary 2 we can perform a Pareto optimization over the
paths for each robot and examine only these paths in the optimiza-
tion problem.

Number of Pareto-paths.
In this section we discuss the complexity of finding all Pareto-

paths. As the following lemma states, evidently the number of
Pareto-paths can be exponential with respect to ρ. We consider
the case where t = 1, N ≥ 3.

LEMMA 8. The number of Pareto-paths in the above case is
Ω(4ρ).

PROOF. Let us consider 4 sub-paths with a length of 12:

1. s2, 0, s2, s1, 0, s1, s2, 0, s2, s1, 0, s1

2. s2, 0, s2, s1, 0, s1, s2, s3, 0, s3, s2, 0

3. s2, s3, 0, s3, s2, s1, 0, s1, s2, 0, s2, 0

4. s2, s3, 0, s3, s2, 0, s2, s3, 0, s3, s2, 0

In this case the contribution to segment si at time t1 is 1 if
path[t1] = si Therefore, these paths are not dominated by each
other. Moreover, there cannot be a valid path that has the same
contribution except for at least one 0 that is replaced.

The starting and ending position of all paths is ep1 facing for-
ward. Therefore we can construct paths by concatenating these sub-
paths. Every combination of these sub-paths cannot dominate an-
other combination since their sub-paths are non-dominating. Thus,
we receive a sub-set of the Pareto-paths. The number of such com-
binations for paths of length ρ is 4(ρ/12).

7. EXPERIMENTAL RESULTS
In this section we analyze the results of the experiments we con-

ducted with more than 11,000 settings for the problem of reducing
input size.

In Section 6.4 we have shown that, theoretically, the number
of pareto paths can be exponential in the input size. However, in
this section we show that practically, in most cases the number of
pareto paths is significantly lower than this theoretical upper bound.

The number of Pareto-paths depends on t, ρ, dist,N , where dist
is the actual distance between a robot’s current and final position.

We have examined over 11,000 different settings, where the ex-
amined parameters were: k = 2..10,d = 3 . . . 6, t = 1 . . . d − 1,
ρ = 2 . . . 12, dist = 0 . . . ρ.

Fig. 6 illustrates that as t grows the number of Pareto-paths drops
exponentially. Fig. 7 and Fig. 8 show that even when the number of
Pareto-paths grows exponentially as ρ grows, the number of Pareto-
paths is much smaller than the number of paths.

Figure 6: Exponential drop in the number of Pareto-paths with
respect to t.

1099

Figure 7: Number of paths and Pareto-paths as a function of ρ.

Figure 8: Exponential drop in the ratio between the number of
Pareto-paths and all paths, with respect to ρ, smaller dist yields
higher ratio. In this case k = 3, d = 3, t = 2.

8. CONCLUSIONS
We examined the problem of preparing against a coordinated at-

tack. First we considered a bounded period of penetration attempts,
which enables the allocation of a single reorganization time, as
large as needed. We presented its optimization problem, and pro-
vided a proven bound for the reorganization time. For a penetration
attempt where the time is unknown, we showed that it is not suffice
to use a single reorganization time, and it must be randomized in
order to avoid vulnerability points. The resulting optimization is an
extension to the first case, and not an optimization over the results
of the first case. The ppd during the reorganization phase wont be
greater than the ppd of the steady state afterwards. Any results that
are greater than that would have no effect, as the adversary would
then choose to penetrate at the steady state. Another interesting re-
sult is that when randomizing over multiple ρ’s using the determin-
istic approach with a high probability yields higher values of ppd.
This is due to the fact that the ppds of the steady state are proven
to be optimal, and the deterministic approach minimizes the reor-
ganization time. When using multiple ρ’s we are able to avoid the
vulnerability points that are created by the deterministic approach.
Then we introduced a method of reducing the number of paths, by
using Pareto-paths. The number of these paths is exponential in the
worst case, but considerably small in practice. Moreover, a bound
for ρ exist.

We limited this work to randomization of the paths towards the
steady state which minimizes the distance traveled by the robots
in the reorganization phase. Future work warrants examination of
randomization over the possible final positions. Moreover, it would
be interesting to examine randomization during the reorganization
phase (without having the robots commit to a path once the first at-
tack is detected, as assumed in this work). Though we concentrated
on two adversaries, the extension of multiple adversaries is straight

forward. Another venue would be to examine the influence of the
time of inspection of a robot, which might lead to a more robust
patrol against multiple attacks.

9. REFERENCES
[1] N. Agmon, G. Kaminka, and S. Kraus. Multi-robot

adversarial patrolling: facing a full-knowledge opponent.
Journal of Artificial Intelligence Research, 42(1):887–916,
2011.

[2] N. Agmon, V. Sadov, G. A. Kaminka, and S. Kraus. The
impact of adversarial knowledge on adversarial planning in
perimeter patrol. In Proceeding of the Seventh International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), volume 1, pages 55–62, 2008.

[3] N. Basilico, N. Gatti, and F. Amigoni. Leader-follower
strategies for robotic patrolling in environments with
arbitrary topologies. In Proceeding of the Eighth
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 57–64, 2009.

[4] Y. Chevaleyre. Theoretical analysis of the multi-agent
patrolling problem. In IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT), pages
302–308, 2004.

[5] Y. Elmaliach, N. Agmon, and G. Kaminka. Multi-robot area
patrol under frequency constraints. Annals of Mathematics
and Artificial Intelligence, 57(3):293–320, 2009.

[6] Y. Elmaliach, A. Shiloni, and G. Kaminka. A realistic model
of frequency-based multi-robot polyline patrolling. In
Proceeding of the Seventh International Conference on
Autonomous Agents and Multiagent Systems (AAMAS),
pages 63–70, 2008.

[7] P. Fazli and A. Mackworth. Multi-robot repeated boundary
coverage under uncertainty. In IEEE International
Conference on Robotics and Biometrics (ROBIO), pages
2167–2174, 2012.

[8] E. Jensen, M. Franklin, S. Lahr, and M. Gini. Sustainable
multi-robot patrol of an open polyline. In IEEE International
Conference on Robotics and Automation (ICRA), pages
4792–4797, 2011.

[9] A. Machado, G. Ramalho, J. Zucker, and A. Drogoul.
Multi-agent patrolling: An empirical analysis of alternative
architectures. In Multi-agent Based Simulations (MABS),
pages 155–170, 2003.

[10] J. Marier, C. Besse, and B. Chaib-draa. Solving the
continuous time multiagent patrol problem. In IEEE
International Conference on Robotics and Automation
(ICRA), pages 941–946, 2010.

[11] J. Rodrìgueza. On the laplacian spectrum and walk-regular
hypergraphs. Linear and Multilinear Algebra, pages
51:285–297, 2003.

[12] P. Villacorta and D. Pelta. Exploiting adversarial uncertainty
in robotic patrolling: A simulation-based analysis. Advances
in Computational Intelligence, pages 529–538, 2012.

[13] Y. Vorobeychik, B. An, and M. Tambe. Adversarial
patrolling games. In Proceeding of the Eleventh
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1307–1308, 2012.

[14] Z. Yin, A. X. Jiang, M. P. Johnson, C. Kiekintveld,
K. Leyton-Brown, T. Sandholm, M. Tambe, and J. P.
Sullivan. TRUSTS: Scheduling randomized patrols for fare
inspection in transit systems. AI Magazine, 33(4):59–72,
2012.

1100

