
Fast Adaptive Learning in Repeated Stochastic Games by
Game Abstraction

Mohamed Elidrisi, Nicholas Johnson,
Maria Gini

Department of Computer Science and Eng.
University of Minnesota
Minneapolis, MN 55455

{elidrisi,njohnson,gini}@cs.umn.edu

Jacob Crandall
Department of Electrical Engineering and

Computer Science
Masdar Institute of Science and Technology

Abu Dhabi, United Arab Emirates
jcrandall@masdar.ac.ae

ABSTRACT
An agent must learn and adapt quickly when playing against
other agents. This process is challenging in particular when
playing in stochastic environments against other learning
agents. In this paper, we introduce a fast and adaptive learn-
ing algorithm for repeated stochastic games (FAL-SG). FAL-
SG utilizes lossy game abstraction to reduce the state space
of the game and facilitate learning and adapting rapidly. We
analyze FAL-SG’s performance by proving bounds on the
abstraction loss and prediction mistakes and show that FAL-
SG satisfies three criteria prescribed for multiagent learning
algorithms. We successfully establish the robustness and
scalability of FAL-SG with extensive theoretical and exper-
imental results.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents

Keywords
Multiagent Learning, Game Theory, Adversarial Learning

1. INTRODUCTION
There is a growing need for multiagent learning algorithms

that operate in complex environments with other learning
algorithms. Many multiagent learning algorithms [1, 5, 23]
have been developed for normal-form games, however fewer
algorithms [3, 10, 11] have been developed for complex envi-
ronments (e.g., stochastic games [26]). The difficulty lies in
having to not only learn a model of the environment but also
learn a model of the opponents. This is even more difficult
when the opponents are also learning. An agent that is able
to learn and adapt quickly to changes in opponent behavior
will have an advantage [13].

The need for agents to learn in multiagent settings has
previously been explored from many different perspectives
through adaptation of single agent algorithms (e.g., Minimax-
Q [16] and Nash-Q [17]), direct policy search [3], and through
multiagent criteria [8, 24, 7]. Additionally, agents have

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

been developed with the focus on performing well in en-
vironments such as stochastic games (WoLF-PHC [3] and
M-Qubed [10]). Crandall recently developed a framework
(Pepper [9]) that utilizes a matrix based algorithm to play
in repeated stochastic games. However, there has yet to be
a focus on the need to learn and adapt quickly in a limited
number of interactions in stochastic games.

It is difficult to perform well in stochastic games due to
the large state space. State abstractions have been effec-
tively used in reinforcement learning to deal with large states
spaces and changes in the environment [20]. Game abstrac-
tion has also been used to find effective strategies in large
games such as Poker [15, 27]. However, most abstraction
methods are game specific. Sandholm et al. [25] have re-
cently motivated the need for such general lossy abstraction
and set forth a general method for stochastic games. FAL-
SG utilizes a general game abstraction method which allows
it to focus on learning fast and adapting to opponent changes
in any general stochastic game.

Fast adaptive learning is grounded in real-world applica-
tions where an agent only has a limited number of inter-
actions with other agents. Many multiagent learning algo-
rithms focus on converging to an equilibrium strategy [3, 8].
However, this requires a large number of interactions, which
is a luxury not available in most real-world domains (e.g.,
auction bidding, search and rescue operations, and stock
market investing).

In this paper, we introduce a multiagent learning algo-
rithm, Fast Adaptive Learning in Stochastic Games (FAL-
SG), that is able to deal with large state spaces and adaptive
environments. The key behind the algorithm design con-
sists of three models: (1) Meta-game model to abstract the
stochastic game into a lossy matrix game representation, (2)
Prediction model to predict the opponents’ next action, (3)
Reasoning model to reasons about the next action to play
given the abstracted game and the predicted opponents’ ac-
tions.

We first describe the models and present FAL-SG (Sec-
tion 2). We then analyze its performance by providing loss
bounds on the meta-game model and prediction model and
show how FAL-SG satisfies three criterion prescribed for
multiagent learning algorithms (Section 3). Finally, we em-
pirically demonstrate the effectiveness of FAL-SG through
experiments in two stochastic games (Section 4). The theo-
retical and experimental results show how FAL-SG outper-
forms existing multiagent learning algorithms while provid-
ing performance guarantees.

1141

2. FAST ADAPTIVE LEARNING
We now present our algorithm for general-sum stochas-

tic games that quickly learns and adapts to changes in the
opponents’ strategy. We call this algorithm FAL-SG (Fast
Adaptive Learning in Stochastic Games). The algorithm is
built around three models:

1. Meta-game model: defines an abstract game based
on key target states in the stochastic game by observ-
ing the actions and rewards of all players.

2. Predictive model: predicts the opponents’ action.
3. Reasoning model: chooses a suitable strategy given

the meta-game and the opponents’ predicted action.

We consider stochastic games that are defined as a tuple
(N,A1...n,S, T ,R1...n), where N := {1, . . . , n} is the set of
players, Ai is the set of actions available to player i where
A =

⊗n
i=1Ai is the joint action space, S := {s1, . . . , sD} is

the set of states, T : S × A × S → [0, 1] is the transition
function, and Ri : A × S → R is the reward function for
player i. We assume that the opponents’ actions and rewards
are observable.

2.1 Meta-game Model
There have been few algorithms that use abstraction in

general stochastic games [25]. FAL-SG utilizes the meta-
game model to effectively use state abstraction and to reduce
the state space of a general stochastic game.

2.1.1 Framework
For a stochastic game G and the abstracted game G̃ we

can view G̃ as a layered directed acyclic graph (LDAG)
where the root node s1 is the start state of the original game,
the reachable states are children, and each leaf node repre-
sents a terminal state, as in Figure 1.

Let τ := {s1, . . . , sd} be a path (i.e., set of states vis-
ited while traversing the graph from the root node to a leaf
node), υ := {a1, . . . , ad} be the corresponding actions, and
u be the average of the rewards received by visiting each
s ∈ τ . We form a tuple (τ, υ, u)t of the path, actions, and
average reward for a single iteration t of the game. Let
Φi := {(τ, υ, u)1, . . . , (τ, υ, u)T } be a set of such tuples for

player i. Finally, we define Ω̃K to be a set that contains
K clusters of paths. The objective of the meta-game model
is to reduce the number of states in G so we can efficiently
compute reasonable strategies.

s1

s2

s9 s12

s3

s5

s6 s7 s9

s4 s5

s7 s10 s8

s9 s6

Figure 1: Example of a LDAG of states.

2.1.2 Method
The meta-game model performs the following three steps

as outlined in Algorithm 1 for a 2-player game.

Algorithm 1 FAL-SG: Meta-game(Φme,Φopp)

1: Parameters:
2: Φme,Φopp: set of tuples (τ, υ, u) for both players.

3: Ω̃K : set of K clusters. (Initially K = 1)
4: Initialize:
5: Φme ← (τme, υme, ume)1, Φopp ← (τopp, υopp, uopp)1
6: Ω̃K ← PathCluster(Φme,Φopp)

7: G̃← Ω̃K

8: while t < end of game do
9: Update Φme, Φopp using Vπ(s) and observed tuples.

10: Update Ω̃K ← PathCluster(Φme,Φopp)

11: Update G̃

−25 −20 −15 −10 −5 0 5 10
−30

−25

−20

−15

−10

−5

0

5

10

P
la

y
e
r

2
 R

e
w

a
rd

Player 1 Reward

Figure 2: Example of path clustering by rewards.

Discover paths: Initially, Φi is empty, so Q-Learning is
used at the beginning of the game as a method for focused
exploration to discover possible paths from the start state
to terminal states. Each path, actions, average reward tuple
(τ, υ, u) computed during exploration for player i is added
to Φi.

Cluster paths: The paths are clustered using the EM

algorithm which fits a mixture of Gaussian distributions over
the observed rewards for all players and assigns a path with

the corresponding reward to a cluster ω ∈ Ω̃K following [12].
The number of clusters K is determined by building 1

to MAXK models. The model with the smallest Bayesian
Information Criterion (BIC) [14] is chosen. This process is
outlined in Algorithm 2.

We define the value function V for a strategy π in the
game G by observing the reward obtained from the joint
action of all agents

V π =
m∑
i=1

π(a, s)[R(s, a, a′) +
∑
s′

T (s, a, a′, s′)V π]. (1)

The value function W in the abstract game G̃ is defined

similarly. Note that τ in G represents a strategy in G̃.
Therefore, the expected valuation of cluster ωi is estimated
in an optimistic manner, where we assume the cluster will
get the reward of the best path τ ∈ ωi assigning it the max-

1142

Algorithm 2 FAL-SG: PathCluster(Φme,Φopp)

1: Parameters:
2: Φme,Φopp: set of tuples (τ, υ, u) for both players.
3: MAXK : upper bound on model size.
4: modelopt: optimal mixture model.
5: for i ≤ MAXK do
6: models[i]← EM(ume, uopp, i)
7: Compute BIC and store in vector element BIC[i].

8: iopt ← argmin
i

BIC

9: modelopt ← models[iopt]
10: Return modelopt

imum valuation of all paths in the cluster

E(ωk) = max
∀π∈ωk

V π(s). (2)

Generate meta-game matrix: The final process of the
abstraction is to create and update the meta-game matrix
as the game is played. There are two parts to be updated:
(1) the number of rows (actions) given the updated set of
clusters ΩK , and (2) the estimate of the future reward for
cluster ωk (i.e., row k).
We adopt a mechanism for estimating the future reward

from an existing framework called Pepper [9]. In Pepper, fu-
ture rewards V π(s) are estimated with two properties. First,
the realism property, which states that V π(s) should reflect
the actual reward received by the agent in an iteration after
stage si is reached. Second, the optimism property which
overestimates the value of V π(s) in order to ensure that
agents avoid premature convergence.

2.1.3 Stochastic Prisoner’s Dilemma
To illustrate the abstraction, we walk through a 2-player

example using a stochastic version of Prisoner’s Dilemma [9].
The game, shown in Figure 3, consists of two players A

and B that each start at the bottom opposite corners of
the grid. The goal of the game is to enter one of the four
terminal gate states labeled 1, 2, 3, and 4 in the smallest
number of moves possible. If both players try to enter gate
1 at the same time, gate 1 and 2 become closed and both
players have no choice but to enter gate 3 or 4. If one of the
players reaches gate 1 before the other then gates 1, 2, and
3 will be closed and the other player will have no choice but
to enter gate 4. If both players try to enter gates 2, 3, or 4
at the same time they will both succeed.

The possible moves for each player are Up, Down, and
Toward Gate, where Toward Gate is right for player A and
left for player B. An attempt to move toward a closed gate,
wall (black space), or outside the grid will lead to no transi-
tion. A player receives a payoff of -1 for each state it visits
except for terminal gate states where the reward is +10. A
single iteration of the game ends when both players reach a
terminal gate.

For example, a path τj for player A represents a set of vis-
ited states starting from the bottom left corner and ending
in a terminal state. Figure 3 illustrates such paths with the
lines labeled τ1, τ2, τ3, and τ4.
Assume that we observe the game and add the four paths

and following average rewards to Φi for player i: u1 = 1.2,
u2 = 3.4, u3 = 6.2, u4 = 5.6. Clustering is performed
resulting in ω1 = {(τ1, υ1, u1) : 1.2}, ω2 = {(τ2, υ2, u2) :

9
91
9

A B

92
9
93
9

�

�

�

�����

τ1

�������

τ2

������

τ3

������

τ4

4

Figure 3: A stochastic Prisoner’s Dilemma showing
sample paths from start to different terminal state.

3.4}, and ω3 = {(τ3, υ3, u3), (τ4, υ4, u4) : 5.9}. The initial
meta-game matrix is produced as shown in Table 1 where
player A is the row player and player B is the column player.
The rewards for player A are initialized to be that of a cluster
as shown in Eq. 2 for the on diagonal cells and the average
of all clusters valuation estimates for the off diagonal cells.

ω1 ω2 ω3

ω1 1.2, 1.3 2.3, 2.6 3.6, 3.4
ω2 2.6, 2.7 3.4, 3.9 4.7, 4.7
ω3 3.6, 3.4 4.7, 4.7 5.9, 5.5

ω1 ω2 ω3 ω4

ω1 3, 3 7, 1 7, 1 7, 1
ω2 1, 7 5, 5 5, 3 5, 1
ω3 1, 7 3, 5 3, 3 3, 1
ω4 1, 7 1, 5 1, 3 1, 1

Table 1: Example of a meta-game matrix in the ini-
tial stage of learning (top) and the final meta-game
matrix (bottom).

After the initial meta-game matrix is created the agents
play more iterations of the game, add or update the paths,
and re-cluster according to Algorithm 2. After sufficient
exploration, a final meta-game matrix is created and used
thereafter, as shown in Table 1.

2.2 Predictive Model
The objective of the predictive model is to determine the

opponents’ next action from past observed actions. We aim
at building a model that can utilize patterns temporally in
the joint action space.

We desire the predictive model to have properties that
facilitate fast and adaptive learning. The desirable proper-
ties include (1) being able to make sequential decisions while
giving more weight to recent actions, (2) utilizing joint ac-
tions temporally, and (3) being sensitive to changes in the
opponent strategy.

The predictive model is constructed using the concept
learning method ELPH [18] as a building block. ELPH
works by storing each subset of past actions, each called a
hypothesis, up to size k in a hypothesis space with a corre-
sponding set of observed outcomes. For instance, if actions
a1 and a4 are played and each time the following opponent
action is a7, then a hypothesis consists of {a1, a4} ⇒ a7.
For each hypothesis an entropy value is calculated, which

1143

is a measure of prediction uncertainty. Hypotheses with en-
tropy values larger than a threshold are pruned away in order
to keep the size of the hypothesis space reasonable. In each
round of the game, ELPH chooses the hypothesis with the
lowest entropy value and uses the corresponding outcome as
the opponent’s predicted next action.

We use ELPH as a building block because it satisfies the
first two desirable properties we listed above. We satisfy
the last property by building an ensemble of ELPH models.
Each ELPH model is an expert in the ensemble and the
final prediction is made through a weighted majority vote
amongst the experts. Each expert who makes an incorrect
prediction has its weight decreased by a multiplicative factor
βexp < 1.
A new expert is added if we observe a change in the oppo-

nent strategy. A change in opponent strategy is estimated
using the Jensen-Shannon divergence (JSD) which is a sym-
metric and smooth version of the Kullback-Leibler (KL) di-
vergence defined between two distributions P and Q as:

JSD(P,Q) =
1

2
KL(P ||D) +

1

2
KL(Q||D), (3)

where D = 1
2
(P + Q), P and Q represent the distributions

of the opponent’s play on different time horizons. When
JSD > δ, a new expert is added to the ensemble at time t.
The new expert’s weight is set to a multiplicative factor of
the total weight of the existing experts as wt,|E|+1 = γWt,

where 0 ≤ γ ≤ 1, Wt =
∑|E|

i=1 wt,i, and E is the set of
experts.

Algorithm 3 FAL-SG: Predictive Model

1: Parameters:
2: δ: threshold for adding a new expert.
3: Initialize:
4: E = ELPH1 (Initial expert)
5: while t < end of game do
6: Predict based on weighted majority vote from E.
7: Update incorrect experts’ weights, wt+1,i = βexpwt,i

8: Compute JSD.
9: if JSD > δ then
10: E ← E

⋃
ELPH|E|+1

11: Set weight of ELPH|E|+1, wt,|E|+1 = γWt

Adding new experts helps the model to be sensitive to
changes in the opponent strategy by allowing the new ex-
perts to concentrate only on recent strategies, while existing
experts may be diluted by previous strategies. However, ex-
isting experts are kept since these experts are already trained
and can quickly detect if an opponent switches back to a pre-
vious strategy. Algorithm 3 outlines this process.

2.3 Reasoning Model
The reasoning model combines information from both the

meta-game model and the predictive model to decide the
next action. The main objective of the reasoning model is
to choose a pair of strategies, known as a targetable pair, in
the meta-game that yield expected rewards that are larger
than the meta-game minimax value for all players. The rea-
soning model computes a discounted prediction accuracy of
the predictive model to measure discounted regret [6] as:

ρt =
t∑

i=1

βt−i
(pi, a−i), (4)

Algorithm 4 FAL-SG

1: Parameters:
2: at: my action at time t.
3: pt: predicted opponent action at time t.
4: ρt: prediction accuracy after t rounds.
5: σ: prediction accuracy threshold.
6: Rmax: optimistic reward.
7: numteach: number of rounds to teach for.
8: numexplore: number of rounds to explore for.
9: Initialize:
10: G̃ = null, ∀s ∈ S, V π(s) = Rmax, π = Q-Learning
11: while t < end of game do

12: G̃← Algorithm 1 (Meta-game model)
13: pt ← Algorithm 3 (Predictive model)
14: ρt ← Equation 4
15: if t < numexplore then
16: at ← π
17: else if t− numexplore < numteach then

18: at ← my half of targetable pair in G̃
19: else if ρt < σ then

20: Play Minimax in G̃

21: else if pt is a targetable pair in G̃ then

22: at ← my half of targetable pair in G̃
23: else
24: at ← Best Respond to pt in G̃

where βt−i = te
i
λ , t is the number of rounds played, βt are

the discounted weights, e is Euler’s constant, and
 is the
0-1 loss function that yields 1 if the predicted action pi does
not match the actual observed action a−i and 0 otherwise.

The reasoning model starts by exploring to learn the game
structure for numexplore number of iterations. Afterwords,
it will attempt to teach the opponents to cooperate. In the
teaching phase, it will continue to play its half of the same
targetable pair for numteach iterations of the game. After
that it will start to choose actions based on its prediction of
the opponents’ next action. It will only base its next action
on the prediction when the past predictions have been ac-
curate. If the prediction accuracy is high it will play its half
of a targetable pair if the prediction is for the opponents to
play their half, otherwise it will play a best response action.
However, if the prediction accuracy is low it will play it safe
by playing the minimax strategy.

3. THEORETICAL ANALYSIS

3.1 Abstraction Loss Bound
FAL-SG will not perform well if the abstraction does not

accurately represent the underlying game. It has been shown
in [15, 27] that abstraction is lossy for some general classes of
games. However, a bound on a lossy abstraction is necessary
as raised in [25]. As such, we establish an upper bound
on the loss between the original game and our abstraction
following the methodology in [25].

Proposition 1. Let the reward loss between the original
and abstract game be defined as, εR = |V π − Wπ|, then
the valuation error is upper bounded by the largest distance
between any two clusters valuation, ∀s ∈ S, ∀R(s) ∈ R

εR ≤ maxi,j∈k| max
∀π∈ωi

V π(s)− max
∀π∈ωj

V π(s)|.

1144

Proof Sketch. The reward for state s is a function of
the clustering process. We have two potential cases,
Case 1: s is in its optimal cluster ω∗. in this case s will get
assigned a reward that is initially optimistic, in accordance
with the optimism criterion but has been shown to converge
to the expected reward in [4, 9].
Case 2: s is not in the optimal cluster ω. In this case the
loss of state s is the distance between the expected reward
of s in the optimal cluster and the expected reward of s in
a non-optimal cluster.

εR ≤ |E(ω∗)− E(ω)|
≤ maxi,j∈K |E(ωi)− E(ωj)|
≤ maxi,j∈K | max

∀π∈ωi

V π(s)− max
∀π∈ωj

V π(s)| (5)

Assume we increase the number of clusters K as the game
is played, then as the number of clusters approaches the
number of states, s will be its own cluster and its reward

will be R̃(h(s), g(a)) = R(s, a).

3.2 Prediction Mistake Bound
We sequentially choose an action at based on the predic-

tion of the opponents’ action pt using Algorithm 4. One goal
is to minimize the number of prediction mistakes. We estab-
lish a typical mistake bound in online learning literature [21]
for FAL-SG specifically following [19] using Theorem 1.

Theorem 1. Between any time i and j where i < j, if
βexp + 2γ < 1 then the number of mistakes between i and j
is bounded by

Mj −Mi ≤
m log(1/βexp) + log(1/γ)

log(2/(1 + βexp + 2γ))
,

where Mi is the number of mistakes made up to time i and
m is the number of mistakes the new expert makes between
time i and j.

Proof. To prove Theorem 1 we need to show two things:
(1) an upper bound on the total weight Wj at time j and
(2) a lower bound on Wj .

(1) Whenever FAL-SG makes a mistake we know that at
least half of the experts in the ensemble made a mistake.
Each time an expert makes a mistake we multiply its weight
by βexp. If the Jensen-Shannon divergence > δ then we add
an expert to the ensemble and set its weight to a fraction
of the total weight of the ensemble γWt. We can bound the
total weight of the ensemble at time j with

Wj ≤
1

2
Wi +

βexp

2
Wi + γWi =

1 + βexp + 2γ

2
Wi.

Recursively this leads to

Wj ≤
1 + βexp + 2γ

2

Mj−Mi

Wi.

Rearranging the terms and taking the logarithm, we get

⇒ log(Wj/Wi) ≤ (Mj −Mi) log((1 + βexp + 2γ)/2)

⇒Mj −Mi ≤
log(Wi/Wj)

log(2/(1 + βexp + 2γ))
. (6)

(2) When JSD > δ, we add a new expert with initial
weight of γWi. The weight of this expert is decreased each
time it makes a mistake by a factor of βexp. Let m be the
number of mistakes the expert makes by time j then

Wj ≥ γWiβ
m
exp.

Substituting this into Equation 6 we obtain the desired bound,

⇒Mj −Mi ≤
log(Wi/γWiβ

m
exp)

log(2/(1 + βexp + 2γ))

⇒Mj −Mi ≤
m log(1/βexp) + log(1/γ)

log(2/(1 + βexp + 2γ))

3.3 Multiagent Learning Criteria
The multiagent learning literature has proposed multi-

ple criteria that lay the theoretical groundwork on which
to build learning agents [3, 24]. We believe the criteria pre-
sented in [24], Safety, Auto-Compatibility, and Targeted Op-
timality, are appropriate for FAL-SG.

For these criteria, we assume a n-player, m-action meta-
game, that all players are able to calculate the targetable
pair strategies and minimax value, and in self-play the play-
ers choose the best targetable pair. Additionally, we assume
the period of exploration is finished so a complete meta-game
has been built.

Safety: Safety requires an agent to guarantee a lower bound
on the average reward it receives against any opponent. This
provides a minimum performance regardless if everything
else fails.

Theorem 2. The average reward against any opponent
is at least SV − ε, where SV is the minimax value of the
meta-game and ε is some error.

Proof Sketch. We show that FAL-SG satisfies the safety
criterion in a worst-case analysis using Theorem 1. FAL-SG
will only receive a reward less than SV if it plays the tar-
getable pair or best response strategies and its prediction is
incorrect. We already proved an upper bound on the number
of mistakes FAL-SG makes, which we can use to establish a
lower bound on the safety by utilizing a worst-case scenario
and assume that FAL-SG will always trust its prediction
(i.e., the prediction accuracy threshold σ = 0).

The total number of mistakes made by FAL-SG in a re-
peated game of T rounds is bounded by

Mtotal ≤
m log(1/βexp) + log(1/γ)

log(2/(1 + βexp + 2γ))
.

If the minimum reward Rmin is received after each mistake
then the total reward received is

Rtotal = (T −Mtotal)× SV +Mtotal ×Rmin

= T × SV −Mtotal × (SV −Rmin).

Let Δ = SV −Rmin, then

= T × SV −Mtotal ×Δ.

The average reward is

Ravg =
1

T
(T × SV −Mtotal ×Δ)

= SV − Mtotal

T
×Δ.

If we let ε = Mtotal
T
×Δ then we obtain the desired bound.

Auto-Compatibility: An agent, when playing against it-
self, should learn a Pareto optimal strategy.

Theorem 3. The average reward in self-play is Pareto
optimal.

1145

Proof Sketch. FAL-SG will initially teach its opponents
to be cooperative and will play its half of the best targetable
pair. Each player will play this targetable pair. After the
teaching phase in Algorithm 4 the prediction accuracy for
all players will be perfect. Since ρt >= σ, all players will
predict that the others will play this targetable pair, and
all players will continue to play the same targetable pair ad
infinitum.

Targeted Optimality: In many situations, we design an
agent with a particular class of opponents in mind. We
desire the performance against this target class of opponents
to be optimal.

Theorem 4. The average reward is at least VBR−ε where
VBR is the expected value of the best response against a target
class of opponents and ε is some error.

Proof Sketch. The target class of opponents we con-
sider is memory bounded stationary opponents. The mem-
ory size of this class of opponents is upper bounded by k,
where k is at most the hypothesis size of ELPH. When an
opponent has a memory bound of k we mean that the op-
ponent can only keep the last k rounds of joint actions in
memory.

When the opponents’ memory is bound to the last k joint
actions then the most sophisticated strategy they may play
is a strategy that has at most n(k+1) possible action se-
quences where n is the number of actions available. ELPH
will be able to fit every possible action sequence into its
hypothesis space. Since the opponents are stationary these
action sequences are deterministic and the entropy ELPH
calculates will converge to zero and FAL-SG will be able
to predict with certainty the next action the opponents will
play and best respond. Therefore, the average reward will
be VBR and ε = 0.

4. EXPERIMENTAL RESULTS

4.1 Stochastic Prisoner’s Dilemma
To illustrate the performance of FAL-SG to learn and

adapt, we experimented in two 2-player, m-action stochas-
tic games: stochastic Prisoner’s Dilemma and stochastic
Chicken. Our focus in these experiments was to measure the
speed and adaptability of algorithms in a limited number of
interactions. To this end, our experiments only consisted of
a few thousand iterations per game.

We present results of the performance of FAL-SG, WoLF-
PHC, Giga-WoLF, Fictitious Play (FP), and Q-Learning in
self-play. We also present some results of these algorithms in
pairwise competition with FAL-SG. All the algorithms are
extended with Pepper [9] so they can be used in stochastic
games. Each experiment was run 100 times and the results
are the average amongst these runs.

WoLF-PHC and Giga-WoLF [3, 2] utilize the “Win or
Learn Fast”concept by using a variable learning rate to learn
fast when losing and more slowly when winning.

Fictitious Play [5] is one of the first multiagent learning
algorithms developed for normal form games. It works by
assuming the opponents are playing a stationary strategy
and then plays a best response strategy to the empirical
distribution of opponent actions.

M-Qubed [10] is a reinforcement learning algorithm for
stochastic games which balances best response, cautious learn-

ing to bound losses, and optimistic learning by looking for
strategies with potentially high returns even if risky.

Q-Learning [22] is a single agent reinforcement learning
algorithm adapted for multiagent environments.

Self-play: Figure 4 shows the average reward in self-play
over time. In this game, converging to the defection strat-
egy leads to an expected reward of 2, which occurs because
both players are choosing gate 1 and eventually going to
gate 3 for a total reward of 2. Converging to the coopera-
tion strategy leads to an expected reward of 5 which occurs
when both choose to go to gate 2. In self-play, WoLF-PHC,
Giga-WoLF, Q-Learning, and FP all converge asymptoti-
cally to defection with a reward of 2. Q-Learning converges
fast while the rest converge at a slower rate. Overall, most of
algorithms performed reasonably well, primarily due to the
extension provided by Pepper which transforms the stochas-
tic game into a modified normal-form game,

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

 0 1000 2000 3000 4000 5000

A
ve

ra
ge

 R
ew

ar
d

Game Iteration

FAL-SG
Q-Learning
WoLF-PHC

Giga-WoLF
FP

Figure 4: Average reward obtained in self-play in
stochastic Prisoner’s Dilemma.

FAL-SG computes an abstraction of the game in 200 it-
erations of exploration and starts exploring abstract states
other than gate 1. FAL-SG attempts to teach the opponent
early on to cooperate by playing its half of the targetable
pair. Eventually, both agents in self-play realize the will-
ingness of the other to cooperate, leading to convergence to
cooperation in less than 1,000 games. For the rest of the
game, FAL-SG continues to cooperate without ever deviat-
ing. The speed of FAL-SG’s convergence in self-play is sur-
prising, but it is explained by the nature of the game and the
reward model structure. In this game, it is not important
whether the agent learns the true reward of the meta-game
as long as it learns the relative benefit of going to one gate
versus the others.

Pairwise Comparison. A pairwise comparison between
FAL-SG and Q-Learning, WoLF-PHC, and M-Qubed is pre-
sented in Figure 5 for 5,000 game iterations. The relatively
small amount of iterations is crucial as it shows the relative
quickness of each agent. The agents are acting in unknown
environments so we do not expect them to perform optimally
but we are evaluating their relative performance. This might
be viewed as an inadequate comparison between the mod-
els to analyze their performance when they are most likely
randomizing and exploring to learn the environment model,
but the major goal of this work is to motivate and highlight

1146

the advantages of fast learning. Therefore, this comparison
is suitable keeping in mind our goal.

-4
-2
 0
 2
 4
 6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Game Iteration

M-Qubed FAL-SG

-4
-2
 0
 2
 4
 6

A
ve

ra
ge

 R
ew

ar
d

WoLF-PHC FAL-SG

-4
-2
 0
 2
 4
 6

Q-Learning FAL-SG

Figure 5: Average reward obtained by FAL-SG vs
other agents in stochastic Prisoner’s Dilemma.

Figure 5 shows the performance of FAL-SG against three
other agents. It is important to note that FAL-SG was able
to compute a preliminary meta-game model and base its ac-
tions on that. Most of the other agents were still exploring
to build an exact game model during most of the 5,000 it-
erations. This exploration phase of the opponents did not
allow FAL-SG to predict their next action accurately, so it
reverted to playing the minimax strategy.

Q-Learning versus FAL-SG has an interesting result where
Q-Learning explored until around iteration 2,250 when it de-
cided to switch to the defecting strategy and FAL-SG was
able to adapt and defected accordingly. WoLF-PHC versus
FAL-SG has the widest margin of performance and slower
convergence rate than Q-Learning. This is consistent with
results shown in self-play as it took longer for WoLF-PHC to
converge to the defection strategy which is explained by the
variability in the learning rate that WoLF-PHC utilizes in
learning. FAL-SG versus M-Qubed has a smaller margin of
performance but FAL-SG is still able to obtain a higher av-
erage reward by obtaining an asymptotic reward of 4 while
M-Qubed obtains an asymptotic reward of 0. We can spec-
ulate that this could be due to the fact that FAL-SG might
be picking up some signal of cooperation from M-Qubed.

4.2 Stochastic Chicken
A stochastic version of Chicken is shown in Figure 6.

A B

1

Figure 6: A stochastic game of Chicken.

If one player goes to the state marked 1 via the dotted
line the player gets a reward of 7. However, if both go via
the dotted line a conflict occurs, neither moves and each
gets a -1. If both go directly (not via dotted line) to the

state marked 1 both move forward with a 50% probability
(meaning that half of the time they will get an additional
-1 and not move forward). If both try the dotted line in the
worst case they are back to start each with -1. If they go
directly each has a 50% chance of going forward which is
better than the reward when both go via the dotted line.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000

A
ve

ra
ge

 R
ew

ar
d

Game Iteration

FAL-SG
Q-Learning
WoLF-PHC

Giga-WoLF
FP

Figure 7: Average reward obtained in self-play in
stochastic Chicken.

From Figure 7 we can see that FAL-SG, Giga-WoLF, and
Fictitious Play converge to an average reward a little higher
than 4. However, FAL-SG converges much faster (about 500
iterations) while Giga-Wolf and Fictitious Play converge af-
ter about 2,500 iterations. FAL-SG’s fast convergence cor-
responds to when it is done exploring the game and starts
taking advantage of the meta-game it created. Q-Learning
and WoLF-PHC converge to a lower average reward of 3.

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000 5000

A
ve

ra
ge

 R
ew

ar
d

Game Iteration

FAL-SG Q-Learning

Figure 8: Average reward obtained by FAL-SG vs
Q-Learning in stochastic Chicken.

When FAL-SG plays other agents in a game of Chicken,
it starts with a period of exploration (500 iterations) after
which it again utilizes the meta-game abstraction that it
found as shown in Figure 8 against Q-Learning with Pep-
per. The meta-game abstraction allowed FAL-SG to quickly
discover a strategy that yielded a reward above 5 while Q-
Learning is too slow in discovering this strategy. There is

1147

no doubt that Q-Learning in the long term will converge as
shown in earlier self-play results. However, the motivation of
fast learning is exactly these scenarios of learning in limited
interactions and in this case the limit was 1,500 iterations.

5. CONCLUSIONS AND FUTURE WORK
We introduced a multiagent learning algorithm, FAL-SG,

that is able to learn fast and adapt to opponents in repeated
stochastic games through the use of game abstraction. Our
analysis shows that the abstraction accurately represents the
underlying game and the number of incorrect predictions
FAL-SG makes is bounded. We show that FAL-SG satisfies
criteria which enable it to perform desirably against any
opponent in complicated environments. Our experimental
results demonstrate that FAL-SG is able to learn and adapt
fast and outperform other learning agents.

In the future we plan to compare different predictive mod-
els in order to improve the interplay between online pre-
diction and opponent modeling for better performance and
stronger theoretical guarantees. Additionally, we wish to ex-
plore how the use of abstractions may allow an agent to be
more competitive against a larger target class of opponents.

Acknowledgment: Work supported in part by NSF IIS-
1208413 and the Safety, Security, and Rescue Research Cen-
ter at the University of Minnesota.

6. REFERENCES
[1] B. Banerjee and J. Peng. Performance bounded

reinforcement learning in strategic interactions. In
Proc. AAAI Conference, pages 2–7, 2004.

[2] M. Bowling. Convergence and no-regret in multiagent
learning. In Advances in Neural Information
Processing Systems, page 209. The MIT Press, 2005.

[3] M. Bowling and M. Veloso. Multiagent learning using
a variable learning rate. Artificial Intelligence,
136(2):215–250, 2002.

[4] R. Brafman and M. Tennenholtz. R-max-a general
polynomial time algorithm for near-optimal
reinforcement learning. The Journal of Machine
Learning Research, 3:213–231, 2003.

[5] G. Brown. Iterative solution of games by fictitious
play. Activity analysis of production and allocation,
13(1):374–376, 1951.

[6] N. Cesa-Bianchi and G. Lugosi. Prediction, learning,
and games. Cambridge University Press, 2006.

[7] D. Chakraborty and P. Stone. Convergence, targeted
optimality and safety in multiagent learning. In Proc.
Int’l Conf. on Machine Learning, June 2010.

[8] V. Conitzer and T. Sandholm. AWESOME: A general
multiagent learning algorithm that converges in
self-play and learns a best response against stationary
opponents. Machine Learning, 67(1):23–43, 2007.

[9] J. Crandall. Just add Pepper: Extending learning
algorithms for repeated matrix games to repeated
Markov games. In Proc. Int’l Conf. on Autonomous
Agents and Multi-Agent Systems, 2012.

[10] J. Crandall and M. Goodrich. Learning to compete,
coordinate, and cooperate in repeated games using
reinforcement learning. Machine Learning,
82(3):281–314, 2011.

[11] E. de Cote and M. Littman. A polynomial-time Nash
equilibrium algorithm for repeated stochastic games.
In Proc. Conf. on Uncertainty in AI, 2008.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38, 1977.

[13] M. Elidrisi and M. Gini. When speed matters in
learning against adversarial opponents (Extended
Abstract). In Proc. Int’l Conf. on Autonomous Agents
and Multi-Agent Systems, pages 1289–1290, 2012.

[14] C. Fraley and A. E. Raftery. Model-based clustering,
discriminant analysis, and density estimation. Journal
of the American Statistical Association,
97(458):611–631, 2002.

[15] A. Gilpin and T. Sandholm. Better automated
abstraction techniques for imperfect information
games, with application to Texas Hold’em poker. In
Proc. Int’l Conf. on Autonomous Agents and
Multi-Agent Systems, page 192. ACM, 2007.

[16] A. Greenwald, M. Zinkevich, and P. Kaelbling.
Correlated Q-learning. In Proc. Int’l Conf. on
Machine Learning, pages 242–249, 2003.

[17] J. Hu and M. P. Wellman. Multiagent reinforcement
learning: Theoretical framework and an algorithm. In
Proc. Int’l Conf. on Machine Learning, pages 242–250,
San Francisco, CA, USA, 1998.

[18] S. Jensen, D. Boley, M. Gini, and P. Schrater.
Non-stationary policy learning in 2-player zero sum
games. In Proc. AAAI Conference, pages 789–794.
AAAI Press, 2005.

[19] J. Z. Kolter and M. A. Maloof. Using additive expert
ensembles to cope with concept drift. In Proc. Int’l
Conf. on Machine Learning, pages 449–456, 2005.

[20] L. Li, T. Walsh, and M. Littman. Towards a unified
theory of state abstraction for MDPs. In Proc. 9th
Int’l Symposium on Artificial Intelligence and
Mathematics, pages 531–539, 2006.

[21] N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. Inf. Comput., 108(2):212–261,
Feb. 1994.

[22] M. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Proc. Int’l
Conf. on Machine Learning, 1994.

[23] M. Littman and P. Stone. Leading best-response
strategies in repeated games. In Int’l Joint Conf. on
Artificial Intelligence Workshop on Economic Agents,
Models, and Mechanisms, 2001.

[24] R. Powers, Y. Shoham, and T. Vu. A general criterion
and an algorithmic framework for learning in
multi-agent systems. Machine Learning, 67(1):45–76,
2007.

[25] T. Sandholm and S. Singh. Lossy stochastic game
abstraction with bounds. In Prod. of the 13th ACM
Conf. on Electronic Commerce, pages 880–897, 2012.

[26] L. Shapley. Stochastic games. Proceedings of the
National Academy of Sciences of the United States of
America, 39(10):1095, 1953.

[27] J. Shi and M. L. Littman. Abstraction methods for
game theoretic poker. In Computers and Games, pages
333–345. Springer, 2001.

1148

