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ABSTRACT
The class of Groves mechanisms has been attracting much
attention in mechanism design literature due to two attrac-
tive characteristics: utilitarian efficiency (also called social
welfare maximization) and dominant strategy incentive com-
patibility. However, when strategic agents can create multi-
ple fake identities and reveal more than one preference under
them, a refined characteristic called false-name-proofness is
required. Utilitarian efficiency and false-name-proofness are
incompatible in combinatorial auctions, if we also have indi-
vidual rationality as a desired condition. However, although
individual rationality is strongly desirable, if participation is
mandatory due to social norms or reputations, a mechanism
without individual rationality can be sustained.

In this paper we investigate the relationship between util-
itarian efficiency and false-name-proofness in a social choice
environment with monetary transfers. We show that in our
modelization no mechanism simultaneously satisfies utilitar-
ian efficiency, false-name-proofness, and individual rational-
ity. Considering this fact, we ignore individual rationality
and design various mechanisms that simultaneously satisfy
the other two properties. We also compare our different
mechanisms in terms of the distance to individual rational-
ity. Finally we illustrate our mechanisms on a facility loca-
tion problem.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; J.4 [Social and Behavioral
Sciences]: Economics

Keywords
Mechanism design, False-name-proofness, Social welfare max-
imizer, Individual rationality

1. INTRODUCTION
Selecting one social outcome from a set of possible out-

comes based on the revealed preferences of selfish agents is a
fundamental problem in economics/social choice literatures.
To achieve a social optimal outcome (e.g., welfare maximiz-
ing), a decision scheme known as a social choice function is
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needed that encourages agents to truthfully reveal their pref-
erences. Unfortunately, as the Gibbard-Satterthwaite theo-
rem argues [8, 16], it is impossible to get such a social choice
function that satisfies some desired properties. Therefore, a
natural approach is to implement a social choice function as
a mechanism that consists of a social choice function and a
well-designed monetary transfer scheme, i.e, a transfer func-
tion.

The development of the class of Groves mechanisms [10] is
one of the great successes of mechanism design theory. Any
Groves mechanism is dominant strategy incentive compati-
ble, i.e. for every agent, a truthful revelation of her prefer-
ence is always a best strategy for any given revealed prefer-
ences of the other agents. The outcome derived by a Groves
mechanism is also utilitarian efficient, i.e. maximizes the
sum of the gross utilities of agents. One of the most promi-
nent results on Groves mechanisms is that under some natu-
ral conditions, they are the only mechanisms satisfying both
of those properties [9]. Due to these advantages, the Groves
mechanisms and their extensions have been studied in sev-
eral mechanism design literatures.

In this paper we study social choice problems where agent
participations are mandatory, perhaps reflecting the duties
or responsibilities faced by members of a particular commu-
nity. But the social choices affect the agents in the commu-
nity even though they had the opportunity to avoid partic-
ipating in the decision-making procedure. Let us consider
the decision making by a development community for a new
feature that will be included in a new release of an open
source software, e.g., Linux. Due to their responsibilities
for the development, the developers are expected to acqui-
esce to the community’s new decision. Their participation is
mandatory in a sense that they must spend time and effort
on the new feature and the choice affects them, regardless of
their participation in the decision-making procedure. In this
case, a developer might have an incentive to create dummy
developer accounts that support his own opinions, e.g., a
different feature that involves less work (and thus a benefit)
for his share of the implementation.

Such fraud is known as false-name manipulation in mech-
anism design literatures, especially in combinatorial auc-
tions [6]. Robustness against false-name manipulations is
called false-name-proofness, which is a refinement of domi-
nant strategy incentive compatibility. It informally requires
that for every agent, the truthful revelation of her prefer-
ences under her true account/identity is always the best
strategy, for any given revealed preferences of other agents.
Previous work has shown [23] that in combinatorial auc-
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tions, since no mechanism exists that satisfies this property,
utilitarian efficiency, and individual rationality, requiring a
truthful revelation is always weakly better than not partic-
ipating. This negative result still seems valid even in our
social choice context (formally shown in Section 3). Thus
in this paper we ignore individual rationality and focus on
false-name-proofness and utilitarian efficiency.

Violating individual rationality seems a big disadvantage
for a mechanism, especially when the participation of agents
is voluntary, since they might not have a strong incentive to
participate in decision-making procedures. However, even
in that case, it is still important to understand what level
of efficiency can be achieved as well as false-name-proofness
by violating individual rationality. Furthermore, in the situ-
ation described above where participation is mandatory, re-
fusing to participate is not an option, but agents may benefit
from false-name manipulations.

The main objective of this paper is to clarify the com-
patibility of false-name-proofness and utilitarian efficiency
in a social choice environment. We will discuss whether
false-name-proof and utilitarian efficient mechanisms exist,
preferably by also satisfying individual rationality. To the
best of our knowledge, besides single-item auctions and a
few other simple settings [17], no false-name-proof and util-
itarian efficient mechanisms have been discovered so far.

1.1 Our Results
We model false-name manipulations in social choice prob-

lems with monetary transfers. We first show an impossibility
result on individual rationality; there exists no mechanism
satisfying individual rationality with false-name-proofness
and utilitarian efficiency under almost all preference do-
mains. This result implies that the VCG mechanism is not
false-name-proof in social choice problems.

We then focus on designing false-name-proof and utili-
tarian efficient mechanisms. We present two mechanisms
that both satisfy these properties. They also support our
approach to ignore individual rationality. Adhering to in-
dividual rationality in previous works on false-name-proof
mechanisms [22, 23, 5, 12] caused a big loss of efficiency in
social choices.

To illustrate their behaviors, we apply our two mecha-
nisms to facility location problem on a straight line, a well-
known problem in social choice theory. Since in the facility
location problem the utilitarian efficient social choice func-
tion coincides with the median location, those mechanisms
can be considered improvements of a quite negative result by
Todo et al. [18], which states that without monetary trans-
fer the leftmost location mechanism is essentially the only
false-name-proof one. This leftmost mechanism may provide
arbitrary small social welfare in our model.

1.2 Related Works
The Groves mechanisms [10] are sound frameworks to

design utilitarian efficient and dominant strategy incentive
compatible mechanisms. A special case of the Groves mech-
anisms is the one designed with Clarke’s pivotal rule [4],
which is also called the Vickrey-Clarke-Groves (VCG) mech-
anism [19, 4, 10]. Green and Laffont [9] proved that un-
der natural assumptions Groves mechanisms are the only
ones that satisfy utilitarian efficiency and dominant strat-
egy incentive compatibility. Roberts [15] introduced a class
of parameterized social choice functions called affine maxi-

mizers, which coincide with the class of dominant-strategy
implementable ones in unrestricted domains and include the
utilitarian efficient one as an extreme case.

The Groves mechanisms and their extensions are applied
in various mechanism design fields. One of the most promi-
nent fields is combinatorial auctions [6], in which the VCG
mechanism is considered one of the benchmarks. In task
scheduling to multiple processors [1, 20], VCG and affine
maximizers are mostly referred as examples of dominant
strategy incentive compatible mechanisms, even though they
are not optimal in terms of minimizing the makespan, i.e.,
the greatest cost for an agent. Even for more general re-
source allocation problems [13, 11], the Groves mechanisms
are applied when we need to consider agents’ incentives.
Garg et al. [7] introduced the idea of Groves mechanisms
into supply chain management.

Yokoo et al. [22] initiated research on false-name-proof
mechanism design and pointed out that the VCG mecha-
nism is not false-name-proof in general combinatorial auc-
tion problems. Moreover, they provided an impossibility re-
sult, where there exists no mechanism that simultaneously
satisfies utilitarian efficiency, false-name-proofness, and in-
dividual rationality for combinatorial auctions. Iwasaki et
al. [12] focused on the worst-case efficiency of false-name-
proof combinatorial auctions and provided a tight bound of

2
m+1

, where m is the number of objects. Conitzer [5], Wag-

man and Conitzer [21], and Todo et al. [18] discussed the
effect of false-name manipulations in social choice problems,
especially voting situations. Aziz et al. [2] and Penna et
al. [14] extended the concept of false-name manipulations to
cooperative games.

2. PRELIMINARIES
Let I be the set of agents that might be involved in the de-

cision process. This set can be seen as the set of all agents
in the world. Actually only subset N ⊆ I of the agents
is ultimately involved in the decision process (this subset
is unknown before the decision process take place). Let
X be the set of potential solutions that can be chosen by
the community. Agent i ∈ N gives his preferences over X
through value function ui : X → R. Let Ui ⊆ RX be the
set of possible preferences for agent i. For any N ⊆ I let
UN =

Q

i∈N Ui be the preference domain on N . Any u ∈ UN

represents a preference profile on X for all agents belonging
to N (if N = {1, . . . , n} then u = (u1, . . . , un) where ui rep-
resents the value function revealed by agent i ∈ N). One
solution among X will be ultimately chosen based on pref-
erence profile u revealed by the agents of N . This choice
is performed by social choice function F :

S

N⊆I UN → X.
In this paper we focus on the social choice function which
chooses one of the solutions that maximize social welfare
(∀N ⊆ I, ∀u ∈ UN , F (u) ∈ arg maxx∈X {

P

i∈N ui(x)}).
Rational agents may lie about their true preferences to

obtain a better solution from social choice function F (with
the highest value). To prevent such behavior, a system of
money transfers is needed to force agents to reveal their true
preferences. This quasi-linear assumption can be applied
whenever money transfers are possible and whenever agents’
value functions correspond to the amount of money they
are willing to pay for a solution. To properly define these
transfer functions, first we need to introduce notation u−i

to represent the restriction of preference profile u ∈ UN to
the set of all agents of N , except agent i (this restricted
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preference profile belongs to UN\{i}). For any agent i ∈ N
transfer function ti : X ×

S

N′⊆I\{i} UN′ → R is such that if
solution x ∈ X is chosen by social choice function F when
u ∈ UN is the revealed preference profile by the agents of
N ⊆ I, then amount of money ti(x, u−i) is transferred from
the decision maker to agent i. Let t = {ti}i∈I be the set
of transfer functions applicable to any agent who may be
involved in the process (for any i ∈ I, ti represents a family
of transfer functions for any subset N ⊆ I, which includes
i). Mechanism (F, t) includes a social choice function (here
the social welfare maximizer) and a set of transfer functions,
which need to be designed to force agents to reveal their true
preferences:

Definition 1. Mechanism (F, t) is said to be incentive
compatible if ∀N ⊆ I, ∀u ∈ UN , ∀i ∈ N, ∀u′

i ∈ Ui we have:

ui(F (u))+ti(F (u), u−i) ≥ ui(F (u′
i, u−i))+ti(F (u′

i, u−i), u−i).

This definition means that if ui is the true value function
of agent i and u−i is the preference profile revealed by the
other agents, then the transfer function is designed such that
if agent i is rational then he prefers to reveal his true pref-
erences instead of any other preference u′

i.
When the preference domain is unrestricted (∀i ∈ N, Ui =

RX) it was proved [9] that any incentive compatible mecha-
nism belongs to the following family of mechanisms:

Definition 2. [10] Mechanism (F, t) is called a Groves
mechanism if for any N = {1, . . . , n} ⊆ I there are functions
h1, . . . , hn where ∀i ∈ N, hi : UN\{i} → R is such that:

ti(F (u), u−i) =
X

j∈N\{i}

uj(F (u)) + hi(u−i).

The property of incentive compatibility holds for any Groves
mechanism not only when the domain is unrestricted but
also for any preference domain. Set of functions {hi}i∈N is
the parameters that mechanism designers can use to confer
properties to the Groves mechanism. One desirable property
for a mechanism with transfers is the following:

Definition 3. Mechanism (F, t) is individualy rational
whenever ∀N ⊆ I, ∀u ∈ UN , ∀i ∈ N we have:

ui(F (u)) + ti(F (u), u−i) ≥ ui(F (u−i)). (1)

An individually rational mechanism has a property where
no agent has an incentive to defect to it. This property
interests agents who might hide from the mechanism. This
property of individual rationality can be attained by the
Groves mechanism by choosing the right set of functions
{hi}i∈N (like ti, these functions rely on the set of involved
agent N ⊆ I that can be inferred from the parameters).
For example, the VCG mechanism defines ∀N ⊆ I, ∀u ⊆
UN , ∀i ∈ N as function hi for any u−i ∈ U−i as

hi(u−i) = − max
x′∈X

{
X

j∈N\{i}

uj(x
′)}.

This VCG mechanism has the property of individual ratio-
nality.

In some situations agents may have the possibility to cre-
ate fake identities to manipulate social choice functions. These
manipulations are much harder to prevent whenever the de-
cision maker cannot see the difference between true and fake

identities. To define these manipulations, we need to con-
sider that I is a set of identities (instead of a set of agents)
that belongs to an unknown subset of real agents. We as-
sume that the size of I can be unbounded to model the fact
that an agent can create as many fake identities as he wants
to manipulate the mechanism. We still consider that ulti-
mately a subset of identities N ⊆ I will participate in the
decision process, but now we consider that multiple identi-
ties of N can belong to the same real agent. Since the deci-
sion maker cannot distinguish between true and fake iden-
tities, the mechanism has to treat any of these identities as
a possible true agent and choose a solution using the same
social choice function introduced above. However to prevent
fake identity manipulations, we need to consider any subset
of identities of N a possible manipulation of a unique true
agent. To define the manipulation of these fake identities we
need to introduce notation u−B for any B ⊆ N to represent
the restriction of preference profile u ∈ UN to all agents in
N except agents belonging to B. The following definition
corresponds to a mechanism’s property to prevent such fake
identity manipulations (or false-name manipulation):

Definition 4. Mechanism (F, t) is said to be false-name-
proof if ∀N ⊆ I, ∀u ∈ UN , ∀B ⊆ N, ∀i ∈ B and ∀u′

i ∈ Ui we
have:

u′
i(x) + ti(x, u−B) ≥ u′

i(F (u)) +
X

j∈B

tj(F (u), u−j)

where x = F (u′
i, u−B).

In this definition B is a subset of the identities that might
belong to unique agent i with true preferences u′

i. If agent i
revealed his true preferences and did not use any fake identi-
ties of B, then solution F (u′

i, u−B) would have been chosen
and agent i would have paid ti(x, u−B). The income for
agent i from this possible manipulation is his true value for
solution F (u) plus the transfer function value sum of his
identities (we consider that these transfers are assumed by
the manipulating agent). Note that the possibility of false-
name manipulation needs some assumptions about both so-
cial choice and transfer functions like anonymity (the so-
cial welfare maximizer is the only affine maximizer with this
anonymity property).

This definition of false-name-proofness obviously general-
izes the notion of incentive compatibility, which only con-
siders the case where an agent uses one identity to trick the
mechanism. Since incentive compatibility is one of the fea-
tures of false-name-proofness, we need to focus on the set
of Groves mechanisms in the unrestricted domain case. But
not all Groves mechanisms are false-name-proof for any do-
main. Especially for the unrestricted domain case we know
that VCGs are not always false-name-proof [23]. One ques-
tion of interest is whether we can design a utilitarian efficient
mechanism with the properties of false-name-proofness and
individual rationality for a given domain.

3. IMPOSSIBILITY RESULT
In this section we show that when the considered so-

cial choice function corresponds to social welfare maximizer
F , the properties of individual rationality and false-name-
proofness described in the preliminaries are incompatible for
a large set of preference domains. We first define the set of
domains where this impossibility result applies:
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Definition 5. Preference domain UI is said to be sym-
metric whenever there exists D ⊆ RX such that for any i ∈ I
we have Ui = D.

This assumption means that the sets of possible preferences
of any identities are identical. This assumption does not
seem so restrictive whenever the property of anonymity is
needed. A second assumption about the domain is needed
before stating our main result:

Definition 6. Preference domain UI is said to be com-
petitive whenever there exists x, y ∈ X such that ∀i ∈ N we
can find ux

i , uy
i ∈ Ui such that ∀z ∈ X\{x}, ux

i (x) > ux
i (z)

and ∀z ∈ X\{y}, uy
i (y) > uy

i (z).

The competitiveness assumption means that at least two
solutions exist that might be strictly better than the other
solutions for any agent. When the domain is symmetric this
definition does not apply in a few rare cases (only if all agents
agree about one best solution or all agents are indifferent
to the solution chosen). The following result shows that
there is little hope to find an individually rational, utilitarian
efficient, and false-name-proof mechanism for most social
choice problems:

Proposition 1. Whenever the preference domain is sym-
metric and competitive, false-name-proofness and individual
rationality are incompatible for the social welfare maximizer.

Proof. Let us consider by contradiction that we can find
t such that false-name-proofness and individual rationality
hold. By symmetric assumption we know that ∃D ⊆ RX

such that ∀i ∈ I, Ui = D. By competitive assumption we
know that ∃f, g ∈ D such that ∀z ∈ X\{x}, f(x) > f(z) and
∀z ∈ X\{y}, g(y) > g(z). Let us first create a preference
profile only using value functions f and g such that x is the
solution chosen by social choice function F . Let α ∈ [0, 1]
be the highest value such that ∃z ∈ X\{x},

αf(x) + (1 − α)g(x) = αf(z) + (1 − α)g(z).

Since ∀z ∈ X\{x}, f(x) > f(z), we have 1 > α and ∃p, q ∈ N
such that 1 > p

q
> α. Let α′ ∈ [0, 1] be the smallest value

such that ∃z ∈ X\{y},

α′f(y) + (1 − α′)g(y) = α′f(z) + (1 − α′)g(z).

Since ∀z ∈ X\{y}, g(y) > g(z), we have α′ > 0 and ∃p′, q′ ∈
N such that α′ > p′

q′ > 0. Now consider a set of q agents

N = {α1, . . . , αp+1, β1, . . . , βq−p−1}. Define the value func-
tions of agents in N by ∀j ∈ {α1, . . . , αp+1}, uj = f and
∀j ∈ {β1, . . . , βq−p−1}, uj = g. The preference profile u =
(uα1 , . . . , uαp+1 , uβ1 , . . . , uβq−p−1) belongs by assumption to
UN and might be a revealed preference profile. By the defi-
nitions of p and q we have F (u) = x.

Let i ∈ {α1, . . . , αp+1} and let ti(x, u−i) = γ be the
fixed value of the transfer for i in that situation. We show
that the value of the transfer function needs to be strictly
greater than γ for (F, t) to simultaneously be false-name-
proof and individually rational. For that purpose we define
ε = g(y) − g(x). Let also k ∈ N be the smallest value
such that [(kp + 1) − p]ε > γ (since ε > 0, such k ex-
ists). We construct a new preference profile that reflects
one possible cheating opportunity for agent i. This new
preference profile will be defined for a new subset of identi-
ties N ′ including N plus the set of fake identities used by

i. Consider N ′ = {α1, . . . , αkp+1, β1, . . . , βk(q−p)−1} where
{α1, . . . , αp+1} and {β1, . . . , βq−p−1} are the same identities
as in N , and {αp+2, . . . , αkp+1} and {βq−p, . . . , βk(q−p)−1}
are the fake identities of i. The agents of N keep the same
value functions (including i) and ∀j ∈ {αp+1, . . . , αkp+1},
uj = f and ∀j ∈ {βq−p, . . . , βk(q−p)−1}, uj = g. Let u′ =
(ux

α1 , . . . , ux
αkp+1 , ux

β1 , . . . , ux
βk(q−p)−1

) denote this new pref-

erence profile (by assumption u′ belongs to UN′). By the
definitions of p and q we have F (u′) = x (this manipula-
tion does not change the solution chosen but this solution
improved the value of the transfers for i). By false-name-
proofness on N for i and his set of possible fake identities
N ′\N , we need:

f(x)+ ti(x, u−i) ≥ f(x)+
X

l∈N′\N

tl(x, u′
−l)+ ti(x, u′

−i). (2)

We presented u′ as a possible manipulation of agent i
but in some situations, u′ can also represent a revealed
preference profile for a set of true identities N ′ (in this
situation, the identities of N ′\N are no longer considered
fake identities of i). Consider the case where for some j ∈
{αp+2, . . . , αkp+1, i} his true preferences are u′

j = g (in that
case, agent j did not reveal his true preferences). By the
definitions of p and q, if agent j reveals his true value func-
tion u′

j , then the solution chosen and the value of the transfer
function for him are the same as if he reveals uj . Now in that
case we define the opportunity of cheating for agent j and
construct a new preference profile reflecting that opportu-
nity. Let k′ ∈ N be the smallest value such that k′p′ ≥ kp+2
and (q′ − p′)k′ ≥ (q − p)k. This new preference profile will
be defined for a new subset of identities N ′′ including N ′

and the set of fake identities used by j. Next consider N ′′ =
{α1, . . . , αk′p′ , β1, . . . , βk′(q′−p′)} where {α1, . . . , αkp+1} and
{β1, . . . , βk(q−p)−1} are the same identities as in N ′, and
{αkp+2, . . . , αk′p′} and {βk(q−p), . . . , βk′(q′−p′)} are the
fake identities of j. The agents of N ′ keep the same
value and ∀k ∈ {αkp+2, . . . , αk′p′}, uk = f and ∀k ∈
{βk(q−p), . . . , βk′(q′−p′)}, uk = g. Let u′′ = (uα1 , . . . , uαk′p′ ,

uβ1 , . . . , uβk′(q′−p′)) denote the associated preference profile.

By the definitions of p′ and q′ we have F (u′′) = y.
By false-name-proofness for N ′ and j (we assumed that

j’s true value function is g) we have:

g(x) + tj(x, u′
−j) ≥ g(y) +

X

k∈N′′\N′

tk(y, u′′
−k) + tj(y, u′′

−j).

By Lemma 2 (see appendix) we know that ∀l ∈ N ′′\N ′ ∪
{i}, tl(y, u′′

−l) ≥ 0, and so we have:

tj(x, u′
−j) ≥ g(y) − g(x) = ε. (3)

By Lemma 2 we also know that ∀l ∈ {βq−p, . . . , βk(q−p)−1},
tl(x, u′

−l) ≥ 0, so from (2) and (3) we can state that

ti(x, u′
−j) ≥

X

j∈{αp+2,...,αkp+1,i}

tj(x, u′
−j) ≥ [kp+1−p]ε > γ,

which constitute a contradiction.

This proposition can be seen as a quite negative result in
our false-name-proofness research. A natural approach to
overcome such an impossibility result is to abandon one of
the requirements of Proposition 1. Next we consider that the
individually rational property can be violated and present
some false-name-proof and utilitarian efficient mechanisms.
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4. FALSE-NAME-PROOFNESS AND DIS-
TANCE TO INDIVIDUAL RATIONALITY

In this section we present some utilitarian efficient mecha-
nisms with the false-name-proofness property for any consid-
ered domain. Because the unrestricted domain is the pref-
erence domain that allows the most opportunities to cheat,
we focus on it.

Strategy proofness is one of the main features needed to
obtain false-name-proofness. Since we know that for the un-
restricted domain, we can restrict our research to the family
of Groves mechanisms to obtain false-name-proofness [9].
We first show a necessary and sufficient condition on the
functions defining the Groves mechanisms to obtain false-
name-proofness for the unrestricted domain:

Lemma 1. When the domain is unrestricted, false-name-
proofness for Groves mechanisms is equivalent to the fact
that ∀N ⊆ I, ∀u ∈ UN , ∀B ⊆ N , and ∀i ∈ B, and so the
following inequality holds:

hi(u−B) −
X

j∈B

hj(u−j) ≥ (|B| − 1) max
x′∈X

{
X

j∈N

uj(x
′)}.

Proof. False-name-proofness applied to the Groves mech-
anisms means that ∀N ⊆ I, ∀u ∈ UN , ∀B ⊆ N, ∀i ∈ B and
∀u′

i ∈ Ui, and we have:

u′
i(x) +

X

j∈N\B

uj(x) + hi(u−B) ≥ u′
i(y) + β +

X

j∈B

hj(u−j),

where x = F (u) and y = F (u−B , u′
i) and

β = |B|
X

j∈N\B

uj(y) + (|B| − 1)
X

j∈B

uj(y).

If the previous inequalities hold for u′
i(x) − u′

i(y) =
P

j∈N\B uj(y)−
P

j∈N\B uj(x), then it holds for any u′′
i ∈ Ui

such that u′′
i (x) − u′′

i (y) ≥
P

j∈N\B uj(y) −
P

j∈N\B uj(x).
The false-name-proofness for the Groves mechanisms is equiv-
alent to the fact that ∀N ⊆ I,∀u ∈ UN , ∀B ⊆ N , and
∀i ∈ B, and the following inequality holds:

hi(u−B) ≥ (|B| − 1)
X

j∈N

uj(y) +
X

j∈B

hj(u−j).

By the definition of F we can replace the term
P

j∈B uj(y)

by maxx′∈X {
P

j∈N uj(x
′)} to obtain our desired property.

This property is convenient to show that a given Groves
mechanism is false-name-proof. We can now present our
first false-name-proofness mechanism:

Proposition 2. A Groves mechanism defined for any N ⊆
I, any u ∈ UN , and any i ∈ N by the following function

hi(u−i) = −
X

j∈N\{i}

max
x′∈X

{uj(x
′)}

is false-name-proof for any domain.

Proof. Consider N ⊆ I, u ∈ UN , B ⊆ N and i ∈ B. By

the definition of hj for j ∈ B, we have

hi(u−B) −
X

j∈B

hj(u−j)

=
X

j∈B

X

k∈N\{j}

max
x′∈X

{uk(x′)} −
X

j∈N\B

max
x′∈X

{uj(x
′)}

=
X

j∈B\{i}

X

k∈N\{j}

max
x′∈X

{uk(x′)} +
X

j∈B\{i}

max
x′∈X

{uj(x
′)}

=
X

j∈B\{i}

X

k∈N

max
x′∈X

{uk(x′)}.

It is obvious that for any possible X we have:
X

k∈N

max
x′∈X

{uk(x′)} ≥ max
x′∈X

{
X

k∈N

uk(x′)}.

From the previous equations we can state that:

hi(u−B) −
X

j∈B

hj(u−j) ≥ (|B| − 1) max
x′∈X

{
X

k∈N

uk(x′)}.

Finally from Lemma 1, we know that false-name-proofness
holds for the unrestricted domain and consequently for any
domain.

We can reformulate the transfer function of this mecha-
nism for preference profile u ∈ UN and agent i ∈ N as

ti(F (u), u−i) =
X

j∈N\{i}

[uj(F (u)) − max
x′∈X

{uj(x
′)}].

This transfer function corresponds to the sum of the other
agents of their value gaps between their best solution and the
solution chosen by the social choice function. It is obvious
that the payments for this mechanism can be very large
when the situation involves many participants.

Even if we have abandoned the property of individual ra-
tionality, we can still consider that it needs to be violated
as little as possible. From that perspective we can define
the distance for a mechanism to the property of individual
rationality as follows:

Definition 7. The distance of mechanism (F, t) to indi-
vidual rationality is defined for a given N ⊆ I and a given
u ∈ UN by the following function:

d(u) = max
i∈N

{di(u)},

where for any i ∈ N

di(u) = ui(F (u−i)) − ui(F (u)) − ti(F (u), u−i).

For a given preference profile, function di defines the degree
of the violation of the individual rationality for agent i and
d represents the worst degree of the violation for an agent
of N . We want to obtain a mechanism with as short a dis-
tance to individual rationality as possible for any preference
profile. To define the worst case value of this distance for a
mechanism, we use the following function:

∆(u) = max
j∈N



max
x′∈X

{uj(x
′)} − min

x′′∈X
{uj(x

′′)}
ff

,

as defined for any N ⊆ I and any u ∈ UN . For a given
preference profile u, this value represents the greatest gap
between the best and the worst solutions for an agent of N .
Based on the previous definition, the following proposition
presents the worst case distance to individual rationality for
our first mechanism:
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Proposition 3. For the mechanism of Proposition 2, the
distance to individual rationality for a given N ⊆ I and a
given u ∈ UN never exceeds (n − 1)∆(u). Furthermore in
the unrestricted domain case, we can find preference profiles
where this bound is attained.

Proof. It is obvious for this mechanism that ∀N ⊆ I, ∀u ∈
UN and any i ∈ N , and so we have:

di(u) ≤ (n − 1)∆(u−i) ≤ (n − 1)∆(u).

By the definition of d, we have

max
i∈N

{di(u)} ≤ (n − 1)∆(u).

Let us now construct preference profile u ∈ UN for N ⊆ I
such that this bound is attained. We consider a situation
where X = {x1, . . . , xn}, a value v > 0, and the preference
profile u ∈ UN such that ∀j ∈ N\{i}, uj(xj) = v, ∀k ∈
N\{j}, uj(xk) = 0, and ∀j ∈ N, ui(xj) = 0. The solution
chosen must belong to {xj}j∈N\{i}. Whatever solution is

chosen, we have di(u−i) = (n − 1)v. Since in that case
∆(u) = v, we have:

di(u) = (n − 1)∆(u),

and as a direct consequence, d(u) = (n − 1)∆(u).

Unfortunately, this worst case distance grows not only with
the greatest gap of value between two solutions but also with
the number of agents involved in the mechanism.

Considering this negative aspect of the previous mecha-
nism we present a second false-name-proof mechanism:

Proposition 4. A Groves mechanism defined for any N ⊆
I, for any u ∈ UN , and for any i ∈ N by the following func-
tion

hi(u−i) = − max
x′∈X

{
X

j∈N\{i}

uj(x
′)} − ∆(u−i)

is false-name-proof for any domain.

Proof. Consider N ⊆ I, u ∈ UN , B ⊆ N , and i ∈ B. By
the definition of hj for j ∈ B, we have

hi(u−B) −
X

j∈B

hj(u−j) = α +
X

j∈B

∆(u−j) − ∆(u−B), (4)

where

α =
X

j∈B

max
x′∈X

{
X

k∈N\{j}

uk(x′)} − max
x′∈X

{
X

j∈N\B

uj(x
′)}.

By the definition of ∆ we can state that
X

j∈B

∆(u−j) − ∆(u−B) ≥ (|B| − 1)∆(u). (5)

Let x∗ ∈ arg maxx′∈X {
P

j∈N\B uj(x
′)}. We know that

max
x′∈X

{
X

j∈N\{i}

uj(x
′)} −

X

j∈N\B

uj(x
∗) ≥

X

j∈B\{i}

uj(x
∗), and

so we can state that

α ≥
X

j∈B\{i}

β(j), (6)

where for any j ∈ B\{i}

β(j) = max
x′∈X

{
X

k∈N\{j}

uk(x′)} + uj(x
∗).

Since ∀j ∈ B\{i}, we have uj(x
∗)+G(u) ≥ maxx′∈X {uj(x

′)},
and it is obvious that for any X we have:

β(j) + uj(x
∗) + ∆(u) ≥ max

x′∈X
{

X

k∈N

uk(x′)}. (7)

By summing (7) for any j ∈ B\{i} we get:
X

j∈B\{i}

β(j) + (|B| − 1)∆(u) ≥ (|B| − 1) max
x′∈X

{
X

k∈N

uk(x′)}.

(8)
By summing (5), (6), and (8) and using (4) we obtain:

hi(u−B) −
X

j∈B

hj(u−j) ≥ (|B| − 1) max
x′∈X

{
X

k∈N

uk(x′)}.

Finally from Lemma 1 we know that false-name-proofness
holds for the unrestricted domain and consequently for any
domain.

The following proposition shows that this mechanism has
a good property in terms of the distance to the individual
compared to the previous mechanism:

Proposition 5. For the mechanism of Proposition 4, the
distance to individual rationality for a given N ⊆ I and a
given u ∈ UN is never higher than ∆(u).

Proof. Let N ⊆ I and u ∈ UN . Since F (u) ∈
arg maxx′∈X {

P

j∈N uj(x
′)}, we know that for any i ∈ N

we have

di(u) =
X

j∈N

uj(F (u−i)) −
X

j∈N

uj(F (u)) + ∆(u−i)

≤ ∆(u−i).

Since ∆(u) ≥ ∆(u−i) and by the definition of d, we get:

d(u) = max
j∈N

{dj(u)} ≤ ∆(u).

This mechanism is much better than the mechanism pro-
posed in Proposition 2 in terms of the worst case distance
to individual rationality. Nevertheless we can still find some
preference profiles where individual rationality is not vio-
lated by the mechanism of Proposition 2, but it is vio-
lated by the mechanism of Proposition 4. For example,
consider preference profile u ∈ UN where ∃x ∈ X such
that ∀j ∈ N and ∀z ∈ X\{x}, we have uj(x) > uj(z).
In that case for the mechanism of Proposition 4 we have
∀j ∈ N, dj(u) = ∆j(uj) > 0 since F (u) = F (u−i). On
the other hand for the mechanism of Proposition 2 we have
dj(u) = 0. We conclude that neither of the two mechanisms
are on any occasion better than the other.

5. FALSE-NAME-PROOFNESS AND
FACILITY LOCATION PROBLEM

We illustrate in this section our impossibility result and
our false-name-proof mechanisms on a well-known problem
in social choice theory. This facility location problem must
find the best place to install a facility on a straight line ac-
cording to the agent positions on that segment. We consider
segment [a, b] that represents a street where the agents live.
Position li ∈ [a, b] of an agent on the segment defines his
value function. We assume that for any N ⊆ I the set of po-
sitions is ordered by increasing order (i.e., ∀i ∈ N\{n}, li ≤
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Figure 1: Instance of facilty location problem

li+1). We want to install the facility at location d ∈ [a, b] to
minimize the sum of the distances between d and position
li of any agent i ∈ N . So we search for d, which maximizes
−

P

j∈N |d − lj |. For any j ∈ N, uj(d) = −|d − lj | defines
the value function of agent j and the social choice function
corresponds to the social welfare maximizer [3]. The solu-
tion chosen in that case is the median value of {lj}j∈N (l n

2

if |N | is even and l n+1
2

if |N | is odd). Fig. 1 represents an

instance of this problem for subset N of six agents. Based
on the median rule, the location ultimately chosen in this
example is l3.

Since this domain is single peaked, consequently it is in-
centive compatible without money transfers. However this
mechanism is not false-name-proof. Indeed, based on the
example in Fig. 1, if agent 4 has the opportunity to cre-
ate one fake identity and to declare identical position l4 for
it, then the position chosen for the facility changes to l4.
In that case the utility of agent i is strictly increased, and
the property of false-name-proofness is violated. To obtain
false-name-proofness in that problem, we need to consider
money transfers.

The domain of preferences for this problem is symmetric
because the position of any agent can be any point in [a, b]. If
a < b, and then at least two different preference profiles exist
such that one solution is strictly better than the other (for
example, the preference profiles associated with positions a
and b). According to Proposition 1, we know that in this
restrictive domain we cannot obtain a false-name-proof and
individually rational mechanism for the median rule.

We now describe the system of payments associated with
the two false-name-proof mechanisms presented in Section
4. For the mechanism of Proposition 2 we need to define
for any u ∈ UN and for any j ∈ N the value of uj(F (u)) −
maxx′∈X {uj(x

′)}. Since the best solution for an agent is ob-
viously his position, this value is equal to minus the distance
between the facility’s final location and the position of agent
j. If d ∈ [a, b] is the median value of {lj}j∈N , then the pay-

ment for agent i ∈ N is
P

j∈N\{i} |lj − d|. For the example
of Fig. 1, the payment for agent 4 when he does not cheat is
P

j∈N\{4} |lj − l3| and his utility for the chosen solution is
P

j∈N |lj − l3|. If agent 4 uses one fake identity to cheat, as

described above, then he needs to pay
P

j∈N |lj − l4| for each

of her identities. Since l3 is the median value of {lj}j∈N , we

have −
P

j∈N |lj − l3| ≥ −2
P

j∈N |lj − l4|, and agent 4 has
no incentive to perform this fraud.

For the mechanism of Proposition 4 we need to define for
any u ∈ UN and any i ∈ N the value of ∆(u−i). This value
corresponds to minus the largest distance between a point in
{lj}j∈N\{i} and extreme points a or b. The others terms of
the transfer function correspond to the VCG payments, and
we describe them in Lemma 3 of the appendix. The value of
the payment for agent i ∈ N is equal to the largest distance
between a point in {lj}j∈N\{i} and a or b, plus, if |N | is

even and i ∈ {1, . . . , n
2
}, the distance between l n

2
and l n

2 +1.

For the example of Fig. 1, the payment for agent 4 when
he does not cheat is |a − l6|, and his utility for the chosen
solution is −|l4− l3|− |a− l6|. If agent 4 uses a fake identity,
as described above, he needs to pay |a − l6| for each of her
identities. Since we have −|l4 − l3| − |a − l6| ≥ −2|a − l6|,
agent 4 has no incentive to perform this fraud.

6. CONCLUSION
In this article we showed that for the social welfare max-

imizer in a quasi-linear environment, individual rational-
ity and false-name-proofness are incompatible for a wide
class of social choice problems including the facility loca-
tion problem. False-name-proofness can be attained when
the requirement of individual rationality is abandoned by ex-
hibiting two false-name-proof mechanisms. For both mech-
anisms, we studied their closeness to individual rationality
and concluded that neither outperforms the other in any
circumstances. Finally we illustrated how payments can be
calculated for our mechanisms in the facility location prob-
lem on a line.

This work rises many questions about the possibility of
designing false-name-proof mechanisms that are as close as
possible to individual rationality. Is it possible to find a
false-name-proof mechanism such that the distance to indi-
vidual rationality that we mentioned is lower than both of
our mechanisms? This concern can focus on restricted do-
mains with favorable properties. Finally interest might also
exist in relaxing another requirement of our impossibility
result, for example, considering that the creation of an un-
restricted number of fake identities is not possible for some
reason.
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APPENDIX
Lemma 2. Whenever preference domains are symmetric

(∃D ⊆ RX such that ∀i ∈ N, Ui = D) and mechanism
(F, t) is simultaneously individually rational and false-name-

proof, then for any x ∈ X such that ∃f ∈ D with ∀z ∈
X\{x}, f(x) > f(z) we have ∀N ⊆ I, ∀u ∈ UN such that
F (u) = x, ∀i ∈ N, ti(x, u−i) ≥ 0.

Proof. By contradiction, assume that ∃N ⊆ I, ∃u ∈ UN

such that F (u) = x and ti(x, u−i) < 0 for some i ∈ N . Let
us now consider one opportunity of cheating for agent i using
set of fake identities N ′ = {α1, . . . , αk} ⊆ I\{i}. All these
identities reveal the same value function f (∀j ∈ N ′, u′

j = f).
Also consider that agent i reveals u′

i = f instead of his true
value function ui (except if ui = f but the result in that case
is the same). Let u′ = (u−i, u

′
i, u

′
α1 , . . . , u′

αk
) denote the new

preference profile (by assumption u′ ∈ UN∪N′). Size k ∈ N
of N ′ corresponds to the minimum value such that

arg max
x′∈X

{
X

j∈N\{i}

uj(x
′) +

X

j∈N′

uj(x
′)} = {x}.

(k is finite since ∀j ∈ N ′, uj = f and ∀z ∈ X\{x}, f(x) >
f(z)). In that case by cheating, agent i does not change the
solution chosen by the social choice function (F (u′) = x),
but we show that the money transfers for him and his fake
identities must be greater than or equal to zero.

Preference profile u′ can also represent a situation where
all the identities of N∪N ′ are true and reveal their true pref-
erences. In that case, individual rationality needs to hold
and for any j ∈ N ′ ∪ {i} we must have u′

j(x) + tj(x, u′
−j) ≥

u′
j(x) (by the definition of k we have ∀j ∈ N ′ ∪ {i}, F (u′) =

F (u′
−j) = x). For any j ∈ N ′ ∪ {i} we have:

tj(x, u′
−j) ≥ 0. (9)

On the other hand by false-name-proofness for N and i, the
following inequality must hold:

ui(x) + ti(x, u−i) ≥ ui(x) +
X

j∈N′∪{i}

ti(x, u′
−j). (10)

From (9) and (10) we obtain ti(x, u−i) ≥ 0, which consti-
tutes a contradiction.

Lemma 3. The values of the transfer function of the VCG
mechanism for the facility location problem on a line are 0
when the size of N is odd. Furthermore if the size of N is
even, then the value of the transfer function for an agent in
{1, . . . , n

2
} is l n

2
− l n

2 +1 and 0 for the other agents.

Proof. Let d ∈ [a, b] be the median value of {lj}j∈N , and

let di ∈ [a, b] be the median value of {lj}j∈N\{i}. For the
facility location problem on a line, the value of the transfer
function for agent i ∈ N corresponds to

X

j∈N\{i}

[|lj − di| − |lj − d|].

If |N | is odd, then d = l n+1
2

. If i belongs to {1, . . . , n−1
2

},
then di = d and the value of the transfer function is 0. If
i belongs to {n+1

2
, . . . , n}, then di = l n−1

2
. For all j ∈

{1, . . . , n−1
2

} we have |lj − di| − |lj − d| = di − d, and for all

{n+1
2

, . . . , n}\{i} we have |lj − di| − |lj − d| = d − di. The
value of the transfer function is also 0.

If |N | is even, then d = l n
2
. If i belongs to {n

2
+1, . . . , n},

then d = di and the value of the transfer function is 0.
Finally if i belongs to {1, . . . , n

2
} then di = l n

2 +1. For all

j ∈ {n
2

+ 1, . . . , n}\{i} we have |lj − di| − |lj − d| = di − d
and for all {1, . . . , n

2
} we have |lj −di|− |lj −d| = d−di. So

the value of the transfer function is d− di = l n
2
− l n

2 +1.
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