
Boosted and Reward-regularized Classification for
Apprenticeship Learning

Bilal Piot
Supelec, MaLIS Research

group, France
GeorgiaTech-CNRS UMI

2958, France
bilal.piot@supelec.fr

Matthieu Geist
Supelec, MaLIS Research

group, France
GeorgiaTech-CNRS UMI

2958, France
matthieu.geist@supelec.fr

Olivier Pietquin
University Lille 1, France

LIFL (UMR 8022 CNRS / Lille
1), SequeL Team, France
olivier.pietquin@univ-

lille1.fr

ABSTRACT

This paper deals with the problem of learning from demon-
strations, where an agent called the apprentice tries to learn
a behavior from demonstrations of another agent called the
expert. To address this problem, we place ourselves into the
Markov Decision Process (MDP) framework, which is well
suited for sequential decision making problems. A way to
tackle this problem is to reduce it to classification but doing
so we do not take into account the MDP structure. Other
methods which take into account the MDP structure need
to solve MDPs which is a difficult task and/or need a choice
of features which is problem-dependent. The main contri-
bution of the paper is to extend a large margin approach,
which is a classification method, by adding a regularization
term which takes into account the MDP structure. The
derived algorithm, called Reward-regularized Classification
for Apprenticeship Learning (RCAL), does not need to solve
MDPs. But, the major advantage is that it can be boosted:
this avoids the choice of features, which is a drawback of
parametric approaches. A state of the art experiment (High-
way) and generic experiments (structured Garnets) are con-
ducted to show the performance of RCAL compared to al-
gorithms from the literature.

Categories and Subject Descriptors

G.3 [PROBABILITY AND STATISTICS]: Statistical
computing

General Terms

Algorithms

Keywords

Learning from Demonstrations, Inverse Reinforcement Learn-
ing, Large margin methods, Boosting

1. INTRODUCTION
This paper addresses the problem of Learning from Demon-

strations (LfD), where an agent called the apprentice tries

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to learn a good behavior from demonstrations of another
agent called the expert. Using the Markov Decision Pro-
cess (MDP) framework, which is well suited for sequential
decision making, this problem can be cast as Apprentice-
ship Learning (AL) [1]. In the AL paradigm, the appren-
tice is observing the expert behaving optimally with respect
to an unknown reward function in an MDP. The goal of
the apprentice is, via some demonstrations or trajectories
of the expert, to learn the expert policy or a policy which
is as good as the expert policy relatively to the unknown
reward. The first idea, in order to address the AL prob-
lem, is to reduce it to a pure classification problem [15, 17,
11, 18, 8]. This approach has been theoretically studied in
the finite horizon case [23, 18, 8] and in the infinite horizon
case [14]. Pure classification techniques such as the large
margin method [17] have a lot of advantages: easy to im-
plement, fast, no need to resolve MDPs, no need to do a
choice of features thanks to boosting techniques. However,
they do not take into account the structure of the MDP
because the temporal structure of the expert trajectories
is not used in a pure classification method. To tackle this
drawback, the authors of [11] use a kernel-based approach
to encapsulate the structure of the MDP into the classifier,
which needs the calculation of the MDP metrics and thus the
knowledge of the whole dynamics. A different approach to
introduce this structure is to allow the apprentice to query
the expert in a given state which does not appear in the ex-
pert demonstrations (see [18, 8]), but this requirement can
be too strong for some real-life applications. The second
idea to produce algorithms which attempt to solve the AL
problem is inspired by the Inverse Reinforcement Learning
(IRL) paradigm. IRL, introduced in [19] and formalized
in [13], is closely related to AL. The only difference is that
IRL tries to find a reward (that could explain the expert
behavior) and not the expert policy. The key idea behind
IRL is that the reward may be the most succinct hypoth-
esis explaining the expert behavior. Some algorithms [1,
22, 12] use IRL as an intermediary step to find a policy
but other algorithms [3, 9] are ”pure” IRL algorithms and
output a reward. This reward must then be optimized via
a direct Reinforcement Learning algorithm (such as Least
Squares Policy Iteration, LSPI [10]) in order to obtain a
policy. IRL-inspired methods are interesting because they
directly take into account the structure of the MDP by find-
ing a policy (through some reward function) such that some
measure of the underlying trajectories distribution matches
the one of the expert policy. However, most of them need

1249



to solve at least one MDP and are parametric methods: a
choice of features must be done by the user. For instance
in [1, 3, 9], the authors suppose the existence of p ∈ N

∗ fea-
tures (φi)1≤i≤p such that the unknown reward function is a
linear combination of those features. However, the choice of
features is problem-dependent and can become a very hard
task for complex problems. In [14], the authors propose
a comparative study between classification algorithms and
IRL algorithms through a theoretical and empirical points of
view. They empirically show that classification algorithms
work well when the unknown reward is informative (the op-
timization horizon is small) which corresponds to a problem
where the temporal structure is not important; they show
that IRL algorithms work better when the unknown reward
is sparse (the optimization horizon is big) which corresponds
to a problem where the temporal structure is important.
This was an expected result as the classification methods
do not take into account the temporal structure of the ex-
pert trajectories. Therefore, it would be interesting to adapt
a classification algorithm for problems where the temporal
structure seems important. The assumption made here is
that problems where the temporal aspect is important must
be the ones with sparse unknown reward. Our main con-
tribution is to introduce a new algorithm which possesses
the advantages of a pure classification method and uses the
MDP structure without querying the expert or calculating
MDP metrics. We manage to do that by introducing a spe-
cific reward-based regularization term, which imposes the
unknown reward to be sparse, in a large margin approach.
Our algorithm is named Reward-regularization Classifica-
tion for Apprenticeship Learning (RCAL). We also present
a way to use boosting for our algorithm which makes it a
non-parametric method. Finally, experiments are conducted
on a state-of the art benchmark (the Highway problem) and
on a generic task (a new type of structured Garnet prob-
lems) to compare the performance of our algorithm against
other recent methods.

2. BACKGROUND AND NOTATIONS
First, we introduce general notations. Let (R, |.|) be the

real space with its canonical norm and X a finite set, RX

is the set of functions from X to R. The set of probability
distributions over X is noted ΔX . Let Y be a finite set,
ΔY

X is the set of functions from Y to ΔX . Let ζ ∈ ΔY
X and

y ∈ Y , ζ(y) ∈ ΔX , the conditional distribution probabil-
ity knowing y, is also noted ζ(.|y) and ∀x ∈ X, ζ(x|y) =
[ζ(y)](x). Let α, β ∈ R

X : α ≤ β ⇔ ∀x ∈ X,α(x) ≤
β(x). Let p ∈ N

∗ and ν ∈ ΔX , we define the Lp,ν-norm

of α, noted ‖α‖p,ν , by: ‖α‖p,ν = (
∑

x∈X |ν(x)α(x)|p) 1
p .

Let x ∈ X, x ∼ ν means that x is sampled according
to ν and Eν [α] =

∑
x∈X ν(x)α(x) is the expectation of

α under ν. Finally, δx ∈ R
X is the function such that

∀y ∈ X, if y 	= x then δx(y) = 0, else δx(y) = 1.

2.1 Markov Decisions Processes
In this paper, the expert agent is supposed to act in a

finite1 MDP. It models the interactions of an agent evolv-
ing in a dynamic environment and is represented by a tu-
ple M = {S,A,R, P, γ} where S = {si}1≤i≤NS is the state

1This work could be easily extended to compact state spaces;
we choose the finite case for the ease and clarity of exposi-
tion.

space, A = {ai}1≤i≤NA is the action space, R ∈ R
S×A is

the reward function (the local representation of the ben-
efit of doing action a in state s), γ ∈]0, 1[ is a discount
factor and P ∈ ΔS×A

S is the Markovian dynamics which
gives the probability, P (s′|s, a), to reach s′ by choosing the
action a in the state s. A Markovian stationary and de-
terministic policy π is an element of AS and defines the
behavior of an agent. In order to quantify the quality of
a policy π relatively to the reward R, we define the value
function. For a given MDP M = {S,A,R, P, γ} and a given
policy π ∈ AS , the value function V π

R ∈ R
S is defined

as V π
R (s) = E

π
s [
∑+∞

t=0 γtR(st, at)], where E
π
s is the expec-

tation over the distribution of the admissible trajectories
(s0, a0, s1, . . . ) obtained by executing the policy π starting
from s0 = s. Moreover, the function V ∗

R ∈ R
S , defined as

V ∗
R = supπ∈AS V π

R , is called the optimal value function. A

policy π ∈ AS such that V π
R = V ∗

R is said optimal and al-
ways exists for a finite-MDP [16][Ch. 6]. A useful tool is,
for a given π ∈ AS , the action-value function Qπ

R ∈ R
S×A:

Qπ
R(s, a) = R(s, a) + γEP (.|s,a)[V

π
R ]. It represents the qual-

ity of the agent’s behavior if it chooses the action a in the
state s and then follows the policy π. Moreover, the function
Q∗

R ∈ R
S×A defined as: Q∗

R = supπ∈AS Qπ
R is called the op-

timal action-value function and has the following property:
π∗ is an optimal policy relatively to the reward R if and
only if π∗(s) ∈ argmaxa∈A Q∗

R(s, a) [13]. The link between
Qπ

R and V π
R is Qπ

R(s, π(s)) = V π
R (s) and the link between

Q∗
R and V ∗

R is maxa∈A Q∗
R(s, a) = V ∗

R(s) [16]. Thus we have
∀s ∈ S, ∀a ∈ A:

R(s, a) = Q∗
R(s, a)− γ

∑
s′∈S

P (s′|s, a)max
a∈A

Q∗
R(s

′, a). (1)

Eq. (1) links the reward R to the optimal action-value func-
tion Q∗

R, it is an interesting equation: knowing Q∗
R it is

straightforward to obtain R by a simple calculation. This
equation will be used in Sec. 3 in order to impose the un-
known reward to be sparse.

2.2 Learning from Demonstrations
In this paper, the expert agent is supposed to act opti-

mally (with respect to the unknown reward function) in a
finite MDP and the apprentice can only observe the expert
policy πE via sampled transitions of πE which means that
the apprentice is not able to query the expert in a given
state, contrary to [18, 8] for example. Moreover, we suppose
that the apprentice has some information about the dynam-
ics which he could have collected by previous interactions
with the MDP. So, we consider that the data we have come
from a batch setting. In this setting, the aim of the appren-
tice is to find a policy πA which is as good as the expert
policy with respect to the unknown reward.

More precisely, we suppose that we have a fixed dataset
of expert sampled transitions DE = (si, π

′
E(si), s

′
i){1≤i≤NE}

where si ∼ νE ∈ ΔS and s′i ∼ P (.|si, πE(si)). In addi-
tion, we suppose that the apprentice has some information
about the dynamics via a fixed dataset of sampled transi-
tions DP = (sj , aj , s

′
j){1≤j≤NP } where sj ∼ νP ∈ ΔS and

s′j ∼ P (.|sj , aj). We have DE ⊂ DP and no particular as-
sumptions are made considering the choice of the action aj

or the distributions νE and νP which can be considered un-
known. Those requirements (used for example in [9, 3]) are
not strong and can be fulfilled by an important number of
real-life applications.

1250



One can argue that having a dataset of sampled transi-
tions DP is a strong assumption. However, our algorithm
(see Sec.5) can be run with DP = DE . In addition, in
this batch setting, IRL algorithms, which output a reward
function, need the set DP in order to approximately resolve
the MDP (i.e. find the optimal policy corresponding to the
outputted reward function) because online optimization is
not possible. In our experiments (see Sec. 5), the batch op-
timization algorithm used is LSPI and do not often obtain
good results when DP = DE for IRL algorithms. This batch
setting is interesting because it allows us comparing classifi-
cation algorithms and IRL algorithms with the same amount
of data and see which one is able to provide a policy that
can imitate the expert.

2.3 MultiClass Classification and
the Large Margin Approach

To tackle the problem of LfD, it is possible to reduce it to
a Multi-Class Classification (MCC) problem [15, 17, 18, 23].
The goal of MCC is, given a training set D = (xi ∈ X, yi ∈
Y ){1≤i≤N} where X is a compact set of inputs and Y a finite

set of labels, to find a decision rule g ∈ Y X that generalizes
the relation between inputs and labels. In [17], the authors
use a large margin approach which is a score-based MCC
where the decision rule g ∈ Y X is obtained via a score func-
tion q ∈ R

X×Y such that ∀x ∈ X, g(x) ∈ argmaxy∈Y q(x, y).
The large margin approach consists, given the training set
D, in solving the following optimization problem:

q∗ = argmin
q∈RX×Y

J(q), (2)

J(q) =
1

N

N∑
i=1

max
y∈Y

{q(xi, y) + l(xi, yi, y)} − q(xi, yi),

where l ∈ R
X×Y ×Y
+ is called the margin function. If this

function is zero, minimizing J(q) attempts to find a score
function q∗ for which the example labels are scored higher
than all other labels. Choosing a nonzero margin function
improves generalization [17]. Instead of requiring only that
the example label is scored higher than all other labels, we
require it to be better than each label y by an amount
given by the margin function. Applying the large margin
approach to the LfD problem is straightforward. From the
set of expert trajectories DE , we extract the set of expert
state-action couples D̃E = (si, πE(si)){1≤i≤NE∈N∗} and we
try to solve:

q∗ = argmin
q∈RS×A

J(q) (3)

J(q) =
1

NE

NE∑
i=1

max
a∈A

{q(si, a) + l(si, πE(si), a)} − q(si, πE(si)).

The policy outputted by this algorithm would be πA(s) ∈
argmaxa∈A q̂(s, a) where q̂ is the output of the minimiza-
tion. The advantages of this method are its simplicity and
the possibility to use a boosting technique [17] to solve the
optimization problem given by Eq. (3). However, this is a
pure classification technique which does not take into ac-
count the dynamics information contained in the sets DE

and DP . In the following section, we derive an algorithm
from the large margin approach which uses the dynamics in-
formation by introducing an original regularization term in
J(q). We will also propose a boosting method [7] to resolve
the new optimization problem and by doing so we obtain a
non-parametric algorithm.

3. REGULARIZED CLASSIFICATION FOR

APPRENTICESHIP LEARNING
The optimization problem given by Eq. (2) tries to ap-

proximate a function from possibly sparse data. This is, in
general, an ill-posed problem and a way to solve it is the
regularization theory [24] which adds a regularization term
that can be seen as a new constraint on the sought function.
In [6], the authors show how the work of Vapnik [25] set the
foundations for a general theory which justifies regulariza-
tion in order to learn from sparse data. Indeed, the basic
idea of Vapnik’s theory is that the search for the best ap-
proximating function from sparse data must be constrained
to a small hypothesis space. If the hypothesis space is too
large, we will find functions that exactly fit the data but
they will have a poor generalization capability (overfitting).
In [6], the authors show that the choice of the regulariza-
tion parameter λ corresponds to the choice of an hypothesis
space: if λ is small the hypothesis space is large and vice
versa. A general way to introduce regularization is to con-
sider the following optimization problem:

q∗ = argmin
q∈RS×A

JW (q) = argmin
q∈RS×A

(J(q) + λW (q)) .

where λ ∈ R
∗
+ and W is a continuous function from R

S×A

to R+. We would like to introduce the information about
the structure contained in the dataset DP and the fact that
we are assuming that the unknown reward function is sparse
in the regularization term W (q). The regularization allows
searching the function q∗ in a more constrained hypothesis
space and reduces the variance of the method. A way to
do it is to remark that we search for a score function which
verifies: ∀s ∈ S, πE(s) ∈ argmaxa∈A q(s, a), which means

that there exists a reward function Rq ∈ R
S×A for which πE

is optimal and such that q(s, a) = Q∗
R(s, a) (see Sec. 2). This

reward is given via the inverse Bellman equation (Eq. (1))
∀s ∈ S, ∀a ∈ A:

Rq(s, a) = q(s, a)− γ
∑
s′∈S

P (s′|s, a)max
a∈A

q(s′, a).

The reward Rq must be sparse in our problem, so a natural
choice for W (q) would be ‖Rq‖1,νP where νP ∈ ΔS×A is the
distribution from where the data are generated. But, as we
do not have Rq(s, a) (as P (.|s, a) is unknown) we will rather
consider, for each transition in DP , the unbiased estimate
of Rq(sj , aj) noted R̂q(j) which is easy to obtain from the
data:

R̂q(j) = q(sj , aj)− γmax
a∈A

q(s′j , a).

Thus, in order to introduce the dynamics information con-
tained in DP , we choose as regularization term W :

W (q) =
1

NP

NP∑
j=1

|R̂q(j)| = 1

NP

NP∑
j=1

|q(sj , aj)− γmax
a∈A

q(s′j , a)|,

As W (q) is not an unbiased estimate of ‖Rq‖νP ,1, one can
argue that Wq does not favor spareness such as ‖Rq‖νP ,1.
However, we have:

W (q) =
∑

(s,a)∈S×A

ν̂P (s, a)
∑
s′∈S

P̂ (s′|s, a)
∣∣∣∣q(s, a)− γmax

a∈A
q(s′, a)

∣∣∣∣ ,

where ν̂P and P̂ (.|s, a) converges to νP and P (.|s, a). By the

1251



Jensen inequality:

W (q) ≥
∑

(s,a)∈S×A

ν̂P (s, a)

∣∣∣∣∣∣
q(s, a)−

∑
s′∈S

P̂ (s′|s, a)γmax
a∈A

q(s′, a)

∣∣∣∣∣∣
,

→
NP→∞

‖Rq‖νP ,p.

Therefore, the criterion Wq is even stronger than ‖Rq‖νP ,1,
which means that (asymptotically) the function q with a
small Wq will have also a small ‖Rq‖νP ,1.

Our algorithm consists in solving the following optimiza-
tion problem:

q∗ = argmin
q∈RS×A

JW (q)

JW (q) = J(q) +
λ

NP

NP∑
j=1

|R̂q(j)|.

Then, the policy outputted by RCAL would be πA(s) ∈
argmaxa∈A q̂(s, a) where q̂ is the output of the minimiza-
tion of JW . This criterion is not convex in the variable q
but it is a perturbed convex criterion because it is com-
posed of the term J(q) which is convex in q and of the term
λ

NP

∑NP
j=1 |R̂q(j)| which is the regularization term. The reg-

ularization term is not convex in q, but it is Lipschitz. In
order to minimize this criterion, we use a boosting technique
which is suited to a convex criterion but which can be di-
rectly adapted to a non-convex one. However, there is no
guarantee of converging to a global minimum.

4. BOOSTING RCAL
A boosting method is an interesting optimization tech-

nique: it minimizes directly the criterion without the step
of choosing features, which is one of the major drawback
of several Apprenticeship Learning methods. As presented
in [7], a boosting algorithm is a projected sub-gradient de-
scent [20] of a convex functional in a specific functions space
(here R

S×A) which has to be a Hilbert space. The princi-
ple is to minimize a convex functional L ∈ R

H where H is
a Hilbert space: minh∈H L(h). This technique can be ex-
tended to non-smooth and non-convex functionals, yet the
functional has to be Lipschitz in order to guarantee that the
gradient of the functional exists almost everywhere [4]. For
a Lipschitz and non smooth functional, the gradient can be
calculated almost everywhere and if not the notion of gen-
eralized gradient is used (see [4] for details). To realize this
minimization, we need to calculate the gradient ∂hL and
define K ⊂ H a set of allowable directions (also called the
restriction set) where the gradient is projected. Boosting
algorithms use a projection step when optimizing over func-
tion space because the functions representing the gradient
are often computationally difficult to manipulate and do not
generalize well to new inputs [7]. In boosting literature, the
restriction set corresponds directly to the set of hypothe-
ses generated by a weak learner. The nearest direction k∗,
which is the projection of the gradient ∂hL, is defined by:

k∗ = argmax
k∈K

〈k, ∂hL〉
‖k‖ ,

where 〈., .〉 is the inner product associated to the Hilbert
space H and ‖.‖ is the associated canonical norm. Then,

the naive algorithm to realize the minimization of L is given
by Algo. 1. More sophisticated boosting algorithms and

Algorithm 1 Naive boosting algorithm

Require: h0 ∈ R
H , i = 0, T ∈ N

∗ (number of iterations)
and (ξj){j∈N} a family of learning rates.

1: While i < T do
2: Calculate ∂hiL(hi).
3: Calculate k∗ associated to ∂hiL(hi) (projection step).
4: hi+1 = hi − ξik

∗

5: i = i+ 1
6: end While, output hT

their convergence proofs are presented in [7]. However the
naive approach is sufficient to obtain good results for the
AL problem as it is shown in [7]. For our specific problem,
H = R

S×A, L = JW and:

〈q1, q2〉 =
∑
s∈S

∑
a∈A

q1(s, a)q2(s, a).

Moreover, in our experiments, we choose the restriction set
K to be weighted classification trees from R

S×A to {−1, 1}
which is a particular choice of weak learners. Calculating
∂qJW for a given q ∈ R

S×A gives:

∂q max
a∈A

{q(si, a) + l(si, πE(si), a)} = δ(si,a∗
i )
,

∂qq(si, πE(si)) = δ(si,πE(si)),

∂q|R̂q(j)| = sgn(R̂q(j))(δ(sj ,aj) − γδ(s′j ,a∗
j )
),

∂qJW =
1

NE

∑
1≤i≤NE

δ(si,a∗
i )

− δ(si,πE(si))

+
λ

NP

∑
1≤j≤NP

∂q|R̂q(j)|.

where a∗
i = argmaxa∈A[q(si, ai) + l(si, πE(si), a)] and a∗

j =
argmaxa∈A q(s′j , a). Obtaining k∗ associated to ∂qJW when

K is the set of classification trees from R
S×A to {−1, 1} is

done as follows. First, we calculate 〈k, ∂qJW 〉:

〈k, ∂qJW 〉 = 1

NE

NE∑
i=1

k(si, a
∗
i )− k(si, πE(si)) (4)

+
λ

NP

j=NP∑
j=1

sgn(R̂q(j))(k(sj , aj)− γk(s′j , a
∗
j )).

To maximize 〈k, ∂qJW 〉, we have to find a classifier k such

that k(si, a
∗
i ) ,k(sj , aj) = sgn(R̂q(j)), k(si, πE(si)) = −1

and k(s′j , a
∗
j ) = − sgn(R̂q(j)) for a maximum of inputs while

taking into consideration the weight factors for each input
in Eq. (4). Thus, in order to obtain k∗, we train a weighted
classification tree with the following training set:

DC = (((si, πE(si)), wE ,−1) ∪ ((si, a
∗
i ), wE , 1))1≤i≤NE

∪
(
((s′j , a

∗
j ), γwP ,− sgn(R̂q(j))) ∪ ((sj , aj), wP , sgn(R̂q(j)))

)
1≤j≤NP

where wE = 1, wP = λNE
NP

are weight factors and where an

element of a data training set of a weighted classification
tree as the following form: (x,w, o) where x is the input, w
the weight and o is the output. So, RCAL with boosting can
be summarized by the Algo. 2. The output qT is a weighted

1252



Algorithm 2 RCAL with boosting

Require: q0 ≡ 0, i = 0, T ∈ N
∗ and (ξj){j∈N} a family of

learning rates.
1: While i < T do
2: Calculate ∂qiJW (qi).
3: Train a classifier with DC and obtain k∗.
4: qi+1 = qi − ξik

∗, i = i+ 1
5: end While, output qT

addition of T classification trees. Those T trees can be seen
as the features of the problem which are automatically found
by the boosting algorithm.

5. EXPERIMENTS
This section shows different empirical results which tend

to corroborate the fact that our algorithm has a good per-
formance. The first experiment is conducted on a state of
the art benchmark which is the Highway problem. The
second experiment is a more generic one where RCAL is
tested on structured Garnets which generalize the results
obtained for the Highway. In our experiments, we compare
RCAL with two IRL algorithms (Structured Classification
IRL (SCIRL) [9] and Relative Entropy (RE) [3]) that use
only sampled trajectories, and with two pure classification
algorithms (a large margin algorithm [17] called Boosted
Classification which corresponds to RCAL with λ = 0 and a
standard classification tree only for the structured Garnets
experiment). The regularization parameter λ is fixed at 0.1,
the learning rates are ξi =

1
i+1

, i ∈ N and the discount factor
is γ = 0.99 in all of our experiments. Finally, the margin
function l(s, a1, a2) is such that l(si, πE(si), πE(si)) = 0 and
l(s, a1, a2) = 1 elsewhere.

5.1 A classical benchmark: The Highway
This problem is used as benchmark in the IRL litera-

ture [1, 21, 9]. We use the same car driving simulator as
in [9]. In this problem the goal is to drive a car on a busy
three-lane highway with randomly generated traffic. The
car can move left and right, accelerate, decelerate and keep
a constant speed (5 action-features). The expert optimizes
a handcrafted reward R which favorises speed, punishes off-
road, punishes even more collisions and is neutral otherwise.
This reward is quite sparse. We have 729 state-features cor-
responding to: 9 horizontal positions for the car, 3 horizontal
and 9 vertical positions for the closest traffic car and 3 pos-
sible speeds. Those features are used for the IRL algorithms
and LSPI which allows us to obtain a policy from the reward
functions outputted by the IRL algorithms. RCAL does not
need those features as it is a boosted algorithm and we fix
the number T of classification trees (weak learners) to 30.
Here is the protocol of the first experiment where DP = DE .
We compute πE via the policy iteration algorithm as the dy-
namics P and the reward R of the car driving simulator are
known (but unknown for the algorithm user). Then, we col-
lect the data for the experiment. The evolving parameter
chosen is the length of the expert trajectory (HE). The col-
lect of data consists in choosing a given number of expert
trajectories (KE) of a given size (HE) and see the perfor-
mance of the algorithm in mean on such type of data. Here
the mean is realized on 100 expert data sets collected ran-
domly for a given HE and KE . Thus, we construct 100

expert data sets Dk
P = Dk

E = (ωj){1≤j≤KE} with KE = 5
where ωj = (si,j , ai,j , s

′
i,j){1≤i≤HE} is a trajectory obtained

by starting from a random state s1,j (chosen uniformly) of
size HE where s′i,j ∼ P (.|si,j , πE(si,j)). Then, we choose as
criterion of performance:

T k(HE) =
Eρ[V

πE
R − V

πk
A

R ]

Eρ[V
πE
R ]

,

where πk
A is the policy obtain by a given algorithm fed by

the set Dk
E = Dk

P and ρ is a uniform distribution over the
state space. For IRL algorithms, the real output is a reward
Rk, then in order to obtain πk

A the algorithm LSPI is fed by
D̂k

P = (s, a, s′, Rk(s, a))(s,a,s′)∈Dk
P
. Finally for a given HE ,

the mean performance is: T (HE) =
1

100

∑
1≤n,k≤100 T

k(HE).

We plot (HE ,T (HE)) in Fig. 1(a).
Another criterion is also useful in order to interpret the

results. We calculate the standard deviation std(HE):

std(HE) =

⎧⎨
⎩

1

100

∑
1≤i≤100

[T k(HE)− T (HE)]
2

⎫⎬
⎭

1
2

.

And we plot (std(HE), T (HE)) in 1(b). The first important

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Length of the expert trajectory

C
rit

er
io

n 
of

 p
er

fo
rm

an
ce

RELSPI
SCIRLLSPI
RCALboost
Classifboost

(a) Algorithms Performance

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

Length of the expert trajectory

S
ta

nd
ar

d 
de

vi
at

io
n

RELSPI
SCIRLLSPI
RCALboost
Classifboost

(b) Standard deviation

Figure 1: The Highway experiment with DP = DE.

remark is that LSPI does not manage to converge because
the amount of non expert data is not sufficient. Thus, in
this particular batch setting, IRL algorithm are not efficient.
The second remark is that RCAL has a better performance

1253



than the Boosted Classification algorithm which shows that
the regularization works. It seems also that RCAL has a
better standard deviation than the Boosted Classification.

The second experiment consists in adding some informa-
tion about the dynamics of the MDP via another fixed set
of transitions. This experiment is exactly the same as the
first one, except that to each set Dk

E we add a second set
Dk

R in order to obtain the set Dk
P = Dk

R ∪ Dk
E . Dk

R is
composed of 100 random trajectories of size 10. The data
set Dk

R is such that: Dk
R = (ωj){1≤j≤KR} with KR = 100

where ωj = (si,j , ai,j , s
′
i,j){1≤i≤HR} is a trajectory obtained

by starting from a random state s1,j (chosen uniformly)
of size HR = 10 where s′i,j ∼ P (.|si,j , πR(si,j)) and πR is
the random policy. Then, we calculate, as in the previ-
ous experiment, T (HE) and std(HE) for each algorithm.
We plot (HE ,T (HE)) in Fig. 2(a) and (std(HE), T (HE))
in 2(b). When, we add some random trajectories LSPI man-

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

Length of the expert trajectory

C
rit

er
io

n 
of

 p
er

fo
rm

an
ce

RELSPI
SCIRLLSPI
RCALboost
Classifboost

(a) Algorithms Performance

0 100 200 300 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Length of the expert trajectory

S
ta

nd
ar

d 
de

vi
at

io
n

RELSPI
SCIRLLSPI
RCALboost
Classifboost

(b) Standard deviation

Figure 2: Highway with random trajectories.

ages to converge to a good policy. We see that RCAL and
SCIRL have quite the same performance and the same stan-
dard deviation even if RCAL manages to attain faster the
best performance. Here, we see that the regularization term
helps a lot because there is a big gap between RCAL and
the Boosted Classification. An important remark is that
RCAL manages to have the same performance than SCIRL
with only 30 weak classifiers (which can be seen as features)
whereas SCIRL uses 729 ∗ 5 = 3645 features. In the next
experiment, we construct a generic framework to see if the
results observed in this particular problem can be extended
to a general class of problems of the same kind.

5.2 Structured Garnet Problems
This experiment focuses on stationary Garnet problems,

which are a class of randomly constructed finite MDPs rep-
resentative of the kind of finite MDPs that might be encoun-
tered in practice [2]. A stationary Garnet problem is charac-
terized by 3 parameters: Garnet(NS , NA, NB). The param-
eters NS and NA are the number of states and actions re-
spectively, and NB is a branching factor specifying the num-
ber of next states for each state action pair. In this experi-
ment, we choose a particular type of Garnets which presents
a topological structure relative to real dynamical systems.
Those systems are generally multi-dimensional state spaces
MDPs where an action leads to different next states close to
each other. The fact that an action leads to close next states
can model the noise in a real system for instance. Thus,
problems such as the highway simulator [9], the mountain
car or the inverted pendulum (possibly discretized) are par-
ticular cases of this type of Garnets. For those particular
Garnets, the state space is composed of d dimensions (d
is chosen uniformly between 2 and 5) and each dimension
i has a finite number of elements xi (chosen uniformly be-
tween 1 and 10). So, a state s = [s1, s2, .., si, .., sd] is a d-uple
where each composent si can take a finite value between 2
and xi. In addition, the distance between two states s, s′ is
‖s − s′‖2 =

∑i=d
i=1(s

i − s′i)2. Thus, we obtain MDPs with
a possible state space size of 105. The number of actions is
chosen uniformly between 1 and 10. For each state action
couple (s, a), we choose randomly a state s′ and NB next
states (NB is chosen uniformly between 2 and 10) are cho-
sen via a Gaussian distribution of d dimensions centered in
s′ to select states close from s′. The probability of going to
each next state is generated by partitioning the unit inter-
val at NB − 1 cut points selected randomly. We construct
a sparse reward R by choosing NS

10
states (uniform random

choice without replacement) where R(s, a) = 1, elsewhere
R(s, a) = 0. For each Garnet problem, it is possible to com-
pute an expert policy πE via the policy iteration algorithm.
For IRL algorithms and LSPI, a choice of features must be
done. This choice is realized via an Approximate Linearly
Dependency (ALD) method with a Gaussian kernel [5]. It
consists in choosing as features, an approximately linear de-
pendent set of gaussian functions centered in the samples
(see [5] for details). In our experiment, we decide to choose
as features, for a given DP = (sj , aj , s

′
j){1≤j≤N}, all the

gaussian functions (φj ∈ R
S×A){1≤j≤N} such that ∀s, ∀a:

φj(s, a) = exp(−‖s− sj‖2)δaj (a).

In the first experiment, we show that RCAL has good per-
formance even when DE = DP . The experiment consists
in generating 100 Garnets (Gn){1≤n≤100}, where πn

E is the
expert policy. For each Gn, we construct 100 expert trajec-
tories Dn,k

E = (si, π
n
E(si), s

′
i){1≤i≤HE} of size HE where s′i ∼

P (.|si, πn
E(si)). Then, we choose as criterion of performance:

Tn,k(H) =
Eρn [V

πn
E

R
−V

π
n,k
A

R
]

Eρn [V
πn
E

R
]

, where πn,k
A is the policy obtain

by a given algorithm fed by the set Dn,k
E and ρn is a uniform

distribution over the state space. Then for a given HE , the
mean performance is: T (HE) = 10−4 ∑

1≤n,k≤100 T
n,k(H).

We plot the performances of classification algorithms in Fig. 3(a)
and the performances of IRL algorithms in Fig. 3(b). We
observe, in Figs. 3(a) and 3(b), that RCAL has the best per-
formance. Moreover, even when DE = DP , RCAL manages

1254



0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Length of the expert trajectory

C
rit

er
io

n 
of

 p
er

fo
rm

an
ce

Classifboost

RCALboost

Classiftree

(a) RCAL vs Classification

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Length of the expert trajectory

C
rit

er
io

n 
of

 p
er

fo
rm

an
ce

RCALboost
SCIRLLSPI
RELSPI

(b) RCAL vs IRL

Figure 3: The Garnets experiment DP = DE.

0 100 200 300 400 500
0.06

0.08

0.1

0.12

0.14

0.16

0.18

HE
k =length of the expert trajectory

M
ea

n 
of

 s
ta

nd
ar

d 
de

vi
at

io
n

Classifboost
RCALboost
Classiftree
SCIRLLSPI

RELSPI

(a) Standard deviation

0 10 20 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Nbase

C
rit

er
io

n 
of

 p
er

fo
rm

an
ce

Classifboost
RCALboost
Classiftree
SCIRLLSPI
RELSPI

(b) Boosting Performance

Figure 4: The Garnets experiment DP = DE.

to have a slight advantage compared to the Boosted Classifi-

cation (it exploits the transition information). In Fig. 3(b),
SCIRL and RE do not provide good results because LSPI
does not converge depending on the size of the problem or
because the choice of features is not adapted to the prob-
lem. That is why, the standard deviation of IRL algorithms
(Fig. 4(a)) is important because on some problems LSPI
works (small size problem) and on others LSPI fails (large
scale problems). Finally, on Fig. 4(b), we plot the mean
performance as a function of the number of weak learners
(The number of weak learners is noted Nbase in the figures).
Here, only 10 weak learners are necessary to obtain a good
performance for RCAL.

In the second experiment, we show how RCAL manages to
do even better when a set of non-expert transitions are added
to DE . To each set Dp,k

E , we had 100 trajectories of size 10
of a random policy. Then we plot the new performances in
Figs. 5(a) and 5(b). We observe, that RCAL is clearly

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Length of the expert trajectory
C

rit
er

io
n 

of
 p

er
fo

rm
an

ce

Classifboost
RCALboost
Classiftree

(a) RCAL vs Classification

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Length of the expert trajectory

C
rit

er
io

n 
of

 p
er

fo
rm

an
ce

RCALboost
SCIRLLSPI
RELSPI

(b) RCAL vs IRL

Figure 5: The second Garnets experiment.

better than others algorithms: the gap between RCAL and
the Boosted Classification is important. Besides, RCAL has
a low standard deviation (see Fig. 6(b)) which makes it a
very stable algorithm. In Fig. 6(a), we see that we can attain
even better performance if we decide to let the number of
weak classifiers be greater than 30.

6. CONCLUSION
RCAL is a large margin algorithm with a regularization

term that imposes a certain sparseness of the unknown re-
ward function. Thanks to this regularization term, RCAL is
able to take into account the structure of the MDP contrary
to [17] and without querying the expert like [18, 8] or calcu-
lating the MDP metrics like [11]. Those requirements can be
too strong for real life applications where querying the ex-

1255



0 10 20 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Nbase

C
rit

er
io

n 
of

 p
er

fo
rm

an
ce

Classifboost
RCALboost
Classiftree
SCIRLLSPI
RELSPI

(a) Boosting Performance

0 100 200 300 400 500
0.04

0.06

0.08

0.1

0.12

0.14

0.16

Length of the expert trajectory

M
ea

n 
of

 s
ta

nd
ar

d 
de

vi
at

io
n

Classifboost
RCALboost
Classiftree
SCIRLLSPI
RELSPI

(b) Standard deviation

Figure 6: The second Garnets experiment.

pert is not possible because only batch samples of the expert
are available and where the dynamics is not provided for the
calculus of the MDP metrics. Moreover, RCAL, contrary to
most IRL-inspired methods, does not solve MDPs, which is
a difficult problem for large state or action spaces. Besides,
thanks to boosting, RCAL becomes a non-parametric algo-
rithm and the choice of features is not needed contrary to [1,
3, 9] for example. The choice of features is often an engineer-
ing problem for a given real-life situation and a bad choice
can lead to very bad performances. In the experiments, we
see that RCAL offers better performances than IRL and
classification algorithms as it is able to use the MDP struc-
ture and the boosting which are great advantages of each
domain. The performance of RCAL can be improved when
non-experts trajectories are collected, however this is not
mandatory. In future works, we want to apply RCAL to
real-life applications and study the theoretical performance
of the algorithm.

7. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement nř270780.

8. REFERENCES
[1] P. Abbeel and A. Ng. Apprenticeship learning via

inverse reinforcement learning. In Proc. of ICML,
2004.

[2] T. Archibald, K. McKinnon, and L. Thomas. On the
generation of markov decision processes. Journal of
the Operational Research Society, 1995.

[3] A. Boularias, J. Kober, and J. Peters. Relative
entropy inverse reinforcement learning. In Proc. of
AISTATS, 2011.

[4] F. H. Clarke. Generalized gradients and applications.
Transactions of the American Mathematical Society,
205:247–262, 1975.

[5] Y. Engel, S. Mannor, and R. Meir. Sparse online
greedy support vector regression. In Proc. of ECML,
2002.

[6] T. Evgeniou, M. Pontil, and T. Poggio. Regularization
networks and support vector machines. Advances in
Computational Mathematics, 13(1):1–50, 2000.

[7] A. Grubb and J. Bagnell. Generalized boosting
algorithms for convex optimization. In Proc. of ICML,
2011.

[8] K. Judah, A. Fern, and T. Dietterich. Active imitation
learning via reduction to iid active learning. In Proc.
of UAI, 2012.

[9] E. Klein, M. Geist, B. Piot, and O. Pietquin. Inverse
reinforcement learning through structured
classification. In Proc. of NIPS, 2012.

[10] M. Lagoudakis and R. Parr. Least-squares policy
iteration. Journal of Machine Learning Research,
4:1107–1149, 2003.

[11] F. Melo and M. Lopes. Learning from demonstration
using mdp induced metrics. In Proc. of ECML, 2010.

[12] G. Neu and C. Szepesvári. Training parsers by inverse
reinforcement learning. Machine learning, 77(2), 2009.

[13] A. Ng, S. Russell, et al. Algorithms for inverse
reinforcement learning. In Proc. of ICML, 2000.

[14] B. Piot, M. Geist, and O. Pietquin. Learning from
demonstrations: Is it worth estimating a reward
function? In Proc. of ECML, 2013.

[15] D. Pomerleau. Alvinn: An autonomous land vehicle in
a neural network. Technical report, DTIC Document,
1989.

[16] M. Puterman. Markov decision processes: Discrete
stochastic dynamic programming. John Wiley & Sons,
1994.

[17] N. Ratliff, J. Bagnell, and S. Srinivasa. Imitation
learning for locomotion and manipulation. In Proc. of
IEEE-RAS International Conference on Humanoid
Robots, 2007.

[18] S. Ross and J. Bagnell. Efficient reductions for
imitation learning. In Proc. of AISTATS, 2010.

[19] S. Russell. Learning agents for uncertain
environments. In Proc. of COLT, 1998.

[20] N. Shor, K. Kiwiel, and A. Ruszcaynski. Minimization
methods for non-differentiable functions.
Springer-Verlag, 1985.

[21] U. Syed, M. Bowling, and R. Schapire. Apprenticeship
learning using linear programming. In Proc. of ICML,
2008.

[22] U. Syed and R. Schapire. A game-theoretic approach
to apprenticeship learning. In Proc. of NIPS, 2008.

[23] U. Syed and R. Schapire. A reduction from
apprenticeship learning to classification. In Proc. of
NIPS, 2010.

[24] A. Tikhonov and V. Arsenin. Methods for solving
ill-posed problems, volume 15. Nauka, Moscow, 1979.

[25] V. Vapnik. Statistical learning theory. Wiley, 1998.

1256




