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ABSTRACT
In this paper we study the connection between anonymous
(normal form) games and normative systems for homoge-
neous concurrent game structures. We present a variant
of the popular strategic logic atl that allows for reasoning
about norm compliance and the strategic ability of coali-
tions of agents. We broaden the notion of a normative sys-
tem compared to earlier work and introduce two categories:
individual and collective norms. Then we establish a techni-
cal link between these two notions, and between the notion
of an individual norm and an anonymous game, as studied
in recent work on algorithmic game theory. These connec-
tions enable us to show that model checking on homogeneous
concurrent game structures with norms is tractable in the
number of agents.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Theory, Economics

Keywords
Strategic logics; Anonymous games; Normative systems; Trac-
tability; Computational complexity; Concurrent Game Struc-
tures

1. INTRODUCTION
Normative systems (or social laws) have received a lot of

attention in the multi-agent systems community in recent
years, and have proved to be a very useful framework for
agent coordination.1 The idea is simple: we put behavioral

1Throughout the paper we use ‘normative systems’ or
‘norms’ whenever we refer to behavioral constraints on our
agents. It is similar to the notion of a ‘social law’ as defined
by Shoham & Tennenholtz [13, 14].
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national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
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constraints on agents and check whether they can achieve
given objectives while complying to these constraints. While
initially proposed and analyzed by Shoham & Tennenholtz
[13, 14], normative systems were further studied using modal

logic by Ågotnes et al. [1, 3, 2, 4] with Computation Tree
Logic (ctl) as a language for expressing objectives and agent-
labeled Kripke structures as system models, and by van der
Hoek et al. [9] who used Alternating-time temporal logic
(atl) to express objective and Concurrent Game Structures
(cgss) as models.

The normative systems used in these papers suffer from
two major shortcomings:

1. They are not expressive enough: A normative system
is understood as a list of forbidden actions, one list per
agent, per state of the system. That does not allow us
to model normative interaction. There is no coordi-
nation involved in norm compliance – the normative
constraints imposed on an agent’s behavior do not in
any way depend on the actions performed by the other
agents.

2. They are not tractable: Checking whether or not a
given normative system can ensure that a given ob-
jective is met is typically (co)-NP-complete, and exact
algorithms tend to use time exponential in the number
of agents.

In this paper we address both of these shortcomings by
introducing a logic for reasoning about a broader notion of
norms, for which we can also show that model checking can
be done in time polynomial in the number of agents in the
system. This means that the logic is tractable for analyzing
and verifying properties of large scale systems containing a
great number of agents, as long as it involves a constant
number of other elements, such as states and actions.

Tractability follows from imposing a restriction on the un-
derlying system, formulated with respect to cgs’s. We re-
quire, in particular, that the system is homogeneous, mean-
ing that it allows a branching-time future that depends solely
on the number of agents performing various actions, and
does not differentiate based on agents’ identity. This re-
striction stems from [11] where an equivalent role-based se-
mantics for atl was given to facilitate fast model checking of
models with few roles. Homogeneity arises from restricting
attention to models with a single role, and the corresponding
class of structures was axiomatized in [12].

The norms we consider involve no corresponding homo-
geneity restriction and they can prescribe different sets of
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legal actions to different agents, depending on the state of
the system. Furthermore, we introduce norms that allow us
to model coordination, such that the set of legal actions for
an agent depends on the actions performed by other agents,
up to equivalence with respect to the underlying structure.
We consider two ways of doing this:

• Individually: Each agent has a list of forbidden ac-
tions, but the list depends on what the other agents
do.

• Collectively: The normative system forbids tuples of
actions directly.

We demonstrate that these two notions are equivalent as
long as we assume full norm compliance. Then we discuss
partial compliance and argue that individual norms raise
some conceptual questions that we can only answer success-
fully if we recognize that individual and collective norms are
genuinely different, and require different notions of partial
compliance in order to do justice to fundamental intuitions
and modeling aims.

Adding normative systems to homogeneous structures re-
sults in a logic that no longer exhibits homogeneity with
respect to the strategic ability of agents under norm com-
pliance. Hence norms serve to reintroduce individuality to
the system. However, we show that model checking remains
tractable. This follows from a link with recent work in al-
gorithmic game theory, namely showing how normative sys-
tems can be efficiently incentivized by a normal form game
which rewards agents for following the norm. We observe,
in particular, that the set of Nash Equilibria for this game
corresponds exactly to the legal actions for the agents under
the corresponding normative system. Furthermore, we show
that all such normative games belong to a class of games
which admit compact representation facilitating polynomial
time computation of the set of Nash Equilibria.

In Section 2 we introduce basic notation and present a
terse summary of the main technical concepts we rely on.
Then, in Section 3 we introduce formal definitions of col-
lective and individual norms for homogeneous concurrent
game structures and present a technical elaboration of these
concepts that culminates in the definition of truth for a lan-
guage of norm compliance on homogeneous structures with
norms. In Section 4 we present our main result, encoding
normative systems as anonymous games, and we use this
correspondence to establish tractability of model checking.
We conclude and discuss directions for future work in Sec-
tion 5.

2. PRELIMINARIES
The technical results presented in this paper arise from a

novel combination of results on three distinct formal notions:
homogeneous concurrent game structures, anonymous nor-
mal form games, and normative systems. We now proceed
with detailed, but somewhat terse, definitions of all the nec-
essary formal background regarding the first two concepts,
and we devote a separate section to normative systems, since
our definitions significantly broaden the notion of a norm
previously considered in related work on strategic logics for
multi-agent systems.

Notation and basic concepts
We start by introducing some notation and basic definitions
that we will use in the remainder of the paper. Throughout
we assume given a set Σ = {1, . . . , n} of agents and a set A =
{p1, . . . , pm} of actions.2 We say that given any function
s : X → Y we let dom(s) = X denote its domain and
targ(s) = {y ∈ Y | ∃x ∈ X : s(x) = y} denote the subset
of the target that s is onto. We let s−i denote the function
s � dom(s) \ {i} (where � is used to signify partial function
application) and we let (s−i, p) denote the function s′ defined
by:

s′(j) =

{
s(j) if j 6= i

p otherwise.

Also, for an arbitrary function s : X → Y we let s− : Y →
2X denote the function defined by:

s−(y) = {x | s(x) = y}

for all y ∈ Y . We will often use the notation #(y, s) =
|s−(y)| = |{x ∈ X | s(x) = y}| and (#(y, s))y∈Y , which
we will refer to as the profile induced by s. It is a vector
which records, for each y ∈ Y , the number of elements of X
that “choose” y. Given a coalition C ⊆ Σ, an action-tuple
for C is a function s ⊆ AC , where s(i) is player i’s action.
Hence the function-space AC contains all possible action-
tuples for the coalition C. Using this notation, we define
the set PC(A) = {(#(y, s))y∈A | s ∈ AC}. We refer to
elements F ∈ PC(A) as C-profiles or just partial profiles if
C is not specified. Given a profile F ∈ PC(A) and an action
p1 ∈ A, we use (F, p1) to denote the profile F ′ defined by

F ′(p2) =

{
F (p2) + 1 if p2 = p1

F (p2) otherwise.

We let F−p1 denote the profile F ′ defined by

F ′(p2) =

{
F (p1)− 1 if p2 = p1

F (p2) otherwise.

Moreover, for two profiles F, F ′ the profile F +F ′ is defined
for all p ∈ A as follows:

F + F ′(p) = F (p) + F ′(p)

For all F ∈ PC(A), we also use ext(F ) = {F ′ ∈ PΣ(A) |
F ′ � C = F}. We notice that we can generate the set
PC(A) without making use of the set of action-profiles for
C, hence we avoid traversing a set that has exponential size
in the number of agents. In particular, given a coalition C
and a vector F ∈ NA such that

∑
p∈A

F (p) = |C|, we observe

that there is at least one action-tuple sF ∈ AC such that
(#(y, sF ))y∈A = F . Conversely, we have, for all s ∈ AC ,∑
p∈A

#(p, s) = |C|. It follows that PC(A) = {F ∈ NA |∑
p∈A

F (p) = |C|} is a compact characterization of the set of

profiles for a coalition.

NCHATL and Concurrent Game Structures
The logical language we use, Lnchatl, is based on atl [5],
extended with one extra operator that we use to express

2We will only consider semantic structures for which the
actions are shared among the agents.
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norm compliance. Formally, the language is generated by
the following bnf:

ϕ ::= > | p | ¬ϕ | ϕ∨ϕ | 〈〈C〉〉©ϕ | 〈〈C〉〉2ϕ | 〈〈C〉〉ϕUϕ | 〈C〉ϕ

where p is a propositional symbol, and C ⊆ Σ is a coalition
of agents.3

The language of nchatl contains three types of modal-
ities for talking about pairs (H,χ) where H is a semantic
structure and χ is a normative system.

• ©, 2 and U are standard temporal operators known
from many temporal logics, and stand for “next state”,
“some future state” and “until”, respectively;

• 〈〈C〉〉 is a strategic ability operator, and its intuitive
meaning is that the coalition 〈〈C〉〉 © ϕ has a joint
strategy for enforcing a formula ϕ in the next state of
H;

• finally 〈C〉 is the norm compliance operator, which has
the intuitive reading that the agents in C are willing
to comply to χ.

For example, if we have some objective ϕ and we won-
der if C complying to χ enables D to ensure ϕ in the next
state of H, we would test if the formula 〈C〉〈〈D〉〉 © ϕ is
true on (H,χ). In this way, properties of H that depend on
the choices of the agents can be specified with great flexi-
bility using χ, without altering the specification of the un-
derlying system H. In particular, rather than hard-coding
predictions and intentions concerning agent behavior in the
system design, we give this aspect a separate semantic char-
acterization using χ, enabling us also to address and study
interactions between the distinct modalities of norm com-
pliance and strategic ability. Further motivation for using
normative systems in verification and specification of multi-
agent systems can be found in [4].

In the following, we specify H and χ compactly, and in
a way that allows for great freedom in the choice of χ. To
this end, we first recap the definition of a concurrent game
structure [5], which provides the backbone for our definition
of H.

Definition 1. A cgs is a tuple S = 〈Σ, Q,Π, (Aq)q∈Q, π, δ〉
where:

• Q is the non-empty set of states.

• Π is a set of propositional letters and π : Q→ 2Π maps
each state to the set of propositions true in it.

• Aq ⊆ A is the set of actions available at q.

• δ is the transition function. For each q ∈ Q and any
action-tuple s ∈ AΣ

q , it returns a state q′ = δ(q, s) ∈ Q,
referred to as a successor of q.

The crucial condition which allows for tractable model
checking of Lnchatl is homogeneity, which was first intro-
duced (implicitly) in [11], and subsequently axiomatized in
[12]. It is formalized as follows, such that S is said to be
homogeneous if the following hold, for all q ∈ Q and all
action-tuples s, s′ ∈ AΣ

q :

(#(y, s))y∈Aq = (#(y, s′))y∈Aq ⇒ δ(q, s) = δ(q, s′) (1)

3This language closely resembles the language of Norm
Compliance ctl presented in [4].

Alternatively, the axiomatic characterization in terms of
atl (using the language of Lnchatl without the norm-compliance
operator) is also very intuitive, saying that a cgs is homo-
geneous as long as any two coalitions of the same size have
the same strategic ability in the next-time step:

〈〈C〉〉 © ϕ↔ 〈〈D〉〉 © ϕ if |C| = |D| (2)

For space reasons we omit the formal definition of truth
on cgss, and only remark that the crucial property of homo-
geneous cgss is that they permit testing the truth of atl-
formulas with only a polynomial time dependence on the
number of agents.4 This result follows from compact repre-
sentation of such structures, obtained by replacing explicit
action-tuples by profiles. In particular, a homogeneous cgs
can be equivalently represented by a structure of the follow-
ing kind [11, 12]:

Definition 2. An hcgs is a tupleH = 〈Σ, Q,Π, π, (Aq)q∈Q, δ〉
where

• Σ, Q, Π, π and (Aq)q∈Q are defined as in Definition 1,

• For every state q ∈ Q, and every F ∈ P (q) = PΣ(Aq),
δ maps F to a successor, δ(q, F ) = q′ ∈ Q.

The profiles F ∈ P (q) assign a natural number to each
action such that the sum of these numbers (over all actions)
sums up to n (the number of agents). The intended meaning
is that the profile describes, for all actions, how many agents
perform that action. We also have C-profiles at q ∈ Q, for
all q ∈ Q,C ⊆ Σ

PC(q) = PC(Aq) =

 F ∈ NAq

∣∣∣∣∣∣
∑
p∈Aq

F (p) = |C|

 (3)

Example 1. Consider an example of an hcgs that models
a jazz trio.

• The trio consists of three players: Keith, Gary and
Jack. Σ = {k, g, j}.

• A scenario that we are modeling is a concert, which
makes for two states: one where the players are idle
(pre-performance), and one in which they are playing.
Q = {q0, q1}, Π = {idle, play}, π(q0) = {idle}, π(q1) =
{play}.

• Agents have four actions available in the initial state:
to remain idle, to play the piano, to play the double-
bass, and to play the drums, which are actions p1, p2,
p3 and p4, respectively. In state q1, agents can perform
action done, which is action p5. Aq0 = {p1, p2, p3, p4},
Aq1 = {p5}.

• Every agent is allowed to play, and to become ‘idle’
once the concert is over. We only list transitions that
lead from one state to a new one, all other possible
transitions are reflexive arrows. In particular, we have
δ(q0, 0, 1, 1, 1) = q1 and δ(q1, 3) = q0.

4This is not true for cgss in general since their size is typ-
ically exponential in the number of agents. There are, in
particular, exponentially many distinct action-tuples at ev-
ery state. This is a major argument against the usefulness of
atl in practical multi-agent modeling scenarios, as pointed
out, for instance, in [10].
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We return to this scenario in Example 2 when we introduce
a normative system to help ensure that the concert becomes
a success.

We postpone a formal definition of truth on hcgss until
Definition 8, when we will define truth for (H,χ), where H
is an hcgs and χ is a normative system. Before we turn
to a formalization of norms, we present the second basic
building block of our approach, namely anonymity in the
sense of algorithmic game theory [6, 7].

Anonymous games
A normative system describes constraints on behavior, but
does not provide any mechanism for making sure that agents
conform to these constraints. To do this, one may associate a
mechanism of reward and/or punishment with the normative
system, to provide an incentive for agents to follow the norm.
We will do this in Section 4, partly to show how our norms
can be backed up by an incentive mechanism, but also to
show how recent work in algorithmic game theory can be
used to ensure efficient model checking. In the following
we provide the necessary background on the game theoretic
notions we rely on.

Definition 3. A (normal form) game (with shared actions)
is a tuple Γ = (Σ,A, (µi)i∈Σ) such that for all action-tuples
s ∈ AΣ, µi(s) ∈ R is the payoff for agent i. We also define
the following notions:

• For any action-tuple s, agent i’s best response to s is
bi(s) = {p ∈ A | ∀p′ ∈ A : µi(s−i, p) ≥ µi(s−i, p′)}.

• An action-tuple s is a Nash Equilibrium in pure strate-
gies if for all i ∈ Σ we have s(i) ∈ bi(s). That is, no
player can do better by changing his action, assuming
all other actions remain fixed. We let NE(Γ) denote
the set of all Nash Equilibria in Γ.

We notice that for any game with shared actions the num-
ber of distinct Σ-profiles is polynomial in Σ. This motivates
studying classes of games for which the payoffs of players re-
main invariant under (classes of) action-tuples that induce
the same profile. The following two notions from recent work
in game-theory both rely on this idea [6, 7].

Definition 4. A game is said to be:

• Homogeneous if for all agents i ∈ Σ and all action-
tuples s, s′ ∈ AΣ, we have

(#(y, s))y∈A = (#(y, s′))y∈A ⇒ µi(s) = µi(s
′)

• Anonymous if for all agents i ∈ Σ and all action tuples
s, s′ ∈ AΣ, we have

s(i) = s′(i) & ((#(y, s−i))y∈A = (#(y, s′−i))y∈A ⇒
µi(s) = µi(s

′)

In short, the intuition behind homogeneous games is that
outcomes for the players remain invariant under permuta-
tions of actions over the players.5 In anonymous games,
agents may differentiate between different tuples that in-
duce the same profile, but only with respect to their own

5This is sometimes called self-anonymous in the game the-
ory literature.

action; they do not care about the identity of the agents
performing the remaining actions that induces the profile.

For homogeneous and anonymous games, we can express
the payoff for each player as a function of profiles rather
than explicit action-tuples. To this end we first define, for all
C ⊆ Σ, F ∈ PC(A) and all 1 ≤ k ≤ m the following number,
which will allow us to define a canonical action-tuple sF that
induces F for any F ∈ PC(A). Keep in mind here that
A = {p1, . . . , pm}, since we will rely on this ordering below.

ρ(0, F ) = 1 & ρ(1, F ) = F (p1)
ρ(i, F ) = ρ(i− 1, F ) + F (pi) for all 2 ≤ i ≤ m (4)

Then we can define sF ∈ AC as follows, for all F ∈
PC(A), i ∈ Σ:

sF (i) = pj for j such that ρ(j − 1, F ) ≤ i ≤ ρ(j, F ) (5)

Clearly, we have (#(y, sF ))y∈A = F , and this representation
(easily computable in polynomial time) can now be used to
define a compact version of the payoff function for homoge-
neous and anonymous games.

µi(F, p) ::= µi(sF , p) for all F ∈ PΣ\{i}(A), p ∈ A

The action p in µi(F, p) is to be thought of as the action
performed by agent i. Notice that we need to keep track
of this p explicitly in order to also cover the case of anony-
mous games. We may now lift the best response function
accordingly, for all agents i ∈ Σ.

∀F ∈ PΣ\{i}(A) : bi(F ) = {p | ∀r ∈ A : µi(F, r) ≤ µi(F, p)}
(6)

From the definition of anonymity and homogeneity, it im-
mediately follows that this representation is faithful, in the
following sense, for all s ∈ AΣ:

bi(s) = bi((#(y, s−i))y∈A) (7)

The crucial property of homogeneous and anonymous games
is that the set of Nash Equilibria can be computed by look-
ing only at the representation that relies on profiles rather
than explicit action-tuples. In particular, as first observed
in [6] and elaborated upon in [7], it follows from Hall’s mar-
riage theorem, a fundamental result from combinatorics [8],
that a profile F ∈ PΣ(A) corresponds to a Nash Equilibrium
s of Γ with (#(y, s))y∈A = F if, and only if, the following
condition holds:

∀P ⊆ A : |{i ∈ Σ | ∃p ∈ P : p ∈ bi(sF )}| ≥
∑
p∈P

F (p) (8)

From this characterization and Equation 7 it is easy to see
that computing the set of profiles corresponding to NE(Γ)
can be done in polynomial time in the number of agents.
In fact, as shown in [7], the problem is in the complexity
class TC0. We will make use of this fact later to show that
the normative systems for homogeneous structures admit
tractable model checking procedures.

3. NORMATIVE SYSTEMS AND TRUTH
Unlike previous work on formal logical representation of

normative systems, we do not restrict attention to simple
lists of forbidden actions. Rather, we want to consider norms
that reflect the way in which norms are inherently social,
such that what an agent should do can depend on what other
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agents are doing. Compliance to such norms might then re-
quire coordination – they can be impossible to comply to
unless the agents jointly reach a decision about what to do,
so that each agent knows what actions the other agents in-
tend to perform. In light of this, one may also consider
norms that do not consist in specifying illegal actions for
individual agents, but rather specifies directly the joint ac-
tions that are not allowed. In particular, one may consider
both individual and collective normative systems.

Below we provide definitions of both these kinds of norma-
tive systems for homogeneous concurrent game structures.
Both of them potentially involve coordination, and we ob-
serve that under the assumption of full norm compliance the
two notions are the equivalent. We argue, however, that for
partial compliance, a non-obvious notion is needed to do jus-
tice to individual norms, setting them apart from collective
ones. The basic definition is as follows:

Definition 5. Given an hcgs H,

• An individual norm is a collection of functions η =
{ηi | i ∈ Σ}, such that for all q ∈ Q, i ∈ Σ, F ∈
PΣ\{i}(q) we have

ηi(q, F ) ⊂ Aq

• A collective norm is function κ such that for all q ∈ Q

κ(q) ⊂ P (q)

The normative systems considered in previous work on
strategic logics correspond to a restricted class of individual
norms, defined below.

Definition 6. Given an hcgs H and an individual norma-
tive system η, we say that η is simple if for all q ∈ Q, i ∈ Σ
and all F, F ′ ∈ PΣ\{i}(q)

ηi(q, F ) = ηi(q, F
′)

Simple norms capture normative systems/social laws for
which the forbidden actions only depend on the state, as in
[4, 9]. Given an individual norm η we define:

Lη(q) = {s ∈ AΣ | ∀i ∈ Σ : s(i) ∈ Aq\ηi(q, (#(y, s−i))y∈Aq )}
(9)

These are the legal action-tuples at q, when we assume full
compliance to the normative system η; everyone chooses an
action that is permitted in light of what all the other agents
choose to do. We say that an individual normative system
is consistent if for all q ∈ Q we have Lη(q) 6= ∅. Intuitively,
consistency of a normative system means that it is possible
to comply with it, and in the following we assume that all
normative systems are consistent.6

We also define the legal action tuples at q when we assume
full compliance to a collective norm κ:

Lκ(q) = {s ∈ AΣ | (#(y, s))y∈Aq ∈ P (q) \ κ(q)} (10)

6It will follow from Theorem 1 that consistency can be
checked in polynomial time. The requirement is made here
to ensure that our models remain serial after implementa-
tion of a norm. Notice that all simple norms are consistent,
since all agents have at least one legal action at every state.
We mention that this is a standard assumption from the
literature, see e.g., [4].

Let us now define:

Pη(q) = {(#(y, s))y∈Aq | s ∈ Lη(q)} (11)

These are the profiles induced by the legal action tuples
at q, and they provide us with a translation of individual
norms into collective norms. In particular, given an individ-
ual norm η we obtain the collective norm ηκ defined at all
q ∈ Q by

ηκ(q) = P (q) \ Pη(q) (12)

Let us now go the other way; from collective norms to
individual norms. Assume we have given a collective norm
κ. Then we first choose some profiles f = {fq ∈ NA | q ∈ Q}
such that for all q ∈ Q we have fq ∈ P (q) \ κ(q). This
allows us to represent the norm κ by the individual norm f

κη
defined as follows, for all q ∈ Q, i ∈ Σ and F ∈ PΣ\{i}(q) :

f
κηi(q, F ) = {p ∈ Aq | p 6= sfq (i) and (F, p) ∈ κ(q)} (13)

Here sfq is the canonical action-tuple inducing fq, as de-
fined in Equation 5. Adequacy of the translation is now easy
to establish, and we omit the proof for space reasons.7

Proposition 1. For any hcgs H and any normative sys-
tem κ on H, we have Pf

κη
(q) = κ(q) for all q ∈ Q.

We now turn to partial compliance, first for collective
norms. Given a coalition C, we define the set of C-profiles
that are compliant to κ as follows:

PCκ (q) = {F ∈ PC(q) | ext(F ) ∩ (P (q) \ κ(q)) 6= ∅} (14)

So a C-profile is compliant to κ if it can be extended to a
complete profile that is legal.8

Let us now turn to partial compliance for individual norms.
It is tempting to say that partial compliance by C ⊆ Σ to
η can be defined using the translation to collective norms
directly, as follows:

{F ∈ PC(q) | ext(F ) ∩ Pη(q) 6= ∅} (15)

However, this is not adequate since it admits F as a partially
compliant C-profile whenever F can be induced by a choice
of actions for some coalition of size |C| that adhere to η. It
does not ensure that F can be induced by a choice of ac-
tions that is permissible for C. Hence for individual norms,
the notion defined below is more appropriate. It refers to
the set of explicit action-tuples to ensure that a partially
compliant profile for C can actually be induced by actions
that are allowed for C. In particular, we define the set of C-
profiles that are partially compliant to an individual norm
η as follows, for all q ∈ Q:

PCη (q) = {(#(y, s))y∈Aq | s ∈ AC & ∃s′ ∈ Lη(q) : s = s′ � C}
(16)

Hence we require that the C-profile can be induced by a C-
action-tuple which can be extended to a legal action-tuple.
This clearly implies that the profile can be extended to a

7In particular, it is straightforward to see that we allow all
profiles that are permitted under κ. However, to ensure
that every agent always has some legal action to perform,
we allow by default the canonical actions that induces the
legal profiles fq, for all q ∈ Q.
8For future work we would like to consider more subtle no-
tions of compliance, but this seems like the obvious place to
start, a minimum requirement that is hard to dispute.
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legal profile, but it is stronger; it also requires the agents in
C to act in such a way as they are permitted to act under
η. It is not enough that some collection of |C| agents could
have acted in this way.

Truth for nchatl on (H,χ)

We are almost ready to define truth of Lnchatl formulas on
(H,χ) where H is an hcgs and χ is an individual or a col-
lective norm. In order to do so, we first need to define
the notion of a compliant strategy with respect to a norm
χ ∈ {η, κ} which is either collective or individual. This, in
turn, requires us to define the set of legal D-profiles given
C-compliance to χ:

PCχ (q,D) = {F ∈ PD(q) |
∃F1 ∈ PC∩Dχ (q) : ∃F2 ∈ PD\C(q) : F = F1 + F2}

(17)

Notice that this definition requires C ∩ D to comply with
the norm independently from the remaining agents in C.
For collective and simple norms, this makes no difference,
but for individual norms involving coordination this means
that we require something stronger than norm-compliance
of C as a coalition. Rather, we interpret D as the coalition
of agents which coordinate their actions, so the fact that C
follow the norm is taken to mean that when D is acting as a
group, without necessarily including all members of C, then
C ∩D also follow the norm as a sub-group of C. However,
we also require, when defining the extensions of D’s strategy
below, that C follow the norm as a whole. Hence in effect
we model the situation when C ∩D and C ∩ (Σ \D) follow
the norm independently of one another.

We could define this differently by assuming only that C
follow the norm as a whole and do not necessarily coordi-
nate their actions inside D to meet the requirements of η.
Nothing hinges on this for the results that are about to fol-
low, but our solution seems more natural with respect to the
intended readings of 〈〈D〉〉 and 〈C〉.

We say that a computation is an infinite sequence λ =
q0q1 . . . of states such that for all positions i ≥ 0, qi+1 is a
successor of qi and we follow standard abbreviations. Hence
a q-computation denotes a computation starting at q, and
λ[i], λ[0, i] and λ[i,∞] denote the i-th state, the finite pre-
fix q0q1 . . . qi and the infinite suffix qiqi+1 . . . of λ for any
computation λ and its position i ≥ 0, respectively.

This leads us to the following notion of a strategy for a
coalition D assuming that C complies with the normative
system.

Definition 7. A χ � C-compatible D-strategy is a map
sD : Q→

⋃
q∈Q P

C
χ (q,D) such that

sD(q) ∈ PCχ (q,D) for each q ∈ Q

We denote the set of all such strategies by stratχC(D).

Notice that if s ∈ stratχC(Σ) for some C ⊆ Σ, then if
we apply δ(q) to s(q) we obtain a unique new state q′ =
δ(q, s(q)). Iterating, we get the induced computation λs,q =
q0q1 . . . such that q = q0 and ∀i ≥ 0 : δ(qi, (s(qi))) = qi+1.
Given sD ∈ stratχC(D) and a state q we get an associated
set of computations out(sD, q). This is the set of all com-
putations that can result when at any state, D is acting in
the way specified by sD. That is

out(sD, q) := {λs,q | s ∈ stratχC(Σ) and sD ≤ s} (18)

We are now ready for the main definition of this section.9

Definition 8. Given a normative hcgs (H,χ) with χ ∈
{η, κ} being either a collective or individual norm, a state
q and a coalition C ⊆ Σ, truth of ϕ on (H,χ) under C-
compliance is defined inductively.

• H,χ,C, q |= p iff q ∈ π(p)

• H,χ,C, q |= ¬ϕ iff H,χ,C, q 6|= ϕ

• H,χ,C, q |= ϕ ∨ ψ iff H,χ,C, q |= ϕ or H,χ,C, q |= ψ

• H,χ,C, q |= 〈〈D〉〉©ϕ iff ∃sD ∈ stratχC(D) : ∀λ ∈
out(sD, q) : λ[1] |= ϕ

• H,χ,C, q |= 〈〈D〉〉2ϕ iff ∃sD ∈ stratχC(D) : ∀λ ∈
out(sD, q) : ∀i ≥ 0 : λ[i] |= ϕ

• H,χ,C, q |= 〈〈D〉〉ϕUψ iff ∃sD ∈ stratχC(D) : ∀λ ∈
out(sD, q) : ∃i ≥ 0 : (λ[i] |= ψ ∧ ∀j ∈ [i] : λ[j] |= ϕ)

• H,χ,C, q |= 〈D〉ϕ iff H,χ,D, q |= ϕ

Example 2. We continue our running jazz trio example.
The trio has one objective – to play the concert – which we
can express by the following nchatl formula: 〈〈{k, g, j}〉〉©
play. This formula is true on the model, but it does not
guarantee a concert. For that we need to ensure this one:
[[{k, g, j}]]© play. We can design a set of individual norms
to make this formula true, assuming that all agents comply:

• ηk(q0, 〈x, y, z, w〉) = ηg(q0, 〈x, y, z, w〉) =
ηj(q0, 〈x, y, z, w〉) = {p2, p3, p4} if x 6= 0

• ηk(q0, 〈0, 0, 1, 1〉) = {p1, p3, p4};

• ηg(q0, 〈0, 1, 0, 1〉) = {p1, p2, p4};

• ηj(q0, 〈0, 1, 1, 0〉) = {p1, p2, p3};

The first point ensures that an agent is allowed to play only
when all the other agents also play an instrument. So if we
add a new state to the model, for the case that only some
of the agents play, we would now be able to prevent this
state from coming about by implementing this normative
system. This illustrates the increased expressive power we
get from considering coordination. Also note that under full
compliance we are sure that the agents play the instruments
that they know how to play: Keith plays piano, Gary plays
the double-bass and Jack plays the drums.

But at this point we also see the limit of our approach,
since with an underlying homogeneous structure, we cannot
distinguish this from a situation where everyone plays but
plays a different instrument than his own. For instance, even
if Jack and Gary switch their instruments, our norm still
requires Keith to play, even if the concert should probably
not go ahead in this case. However, we can capture (parts
of) this distinction, since it corresponds to a scenario when
the norm is violated by Jack and Gary. A direction for future
research that we think will be fruitful is to attempt to use
the norm structure more actively, by developing extensions
of the logic for describing how bringing about a concert in
the wrong way, in violation of the norm, could influence the

9Notice that our definition requires also C to follow the norm
as a group, when we compute the set of possible extensions
of D’s strategy.
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future development of the system. This could perhaps be
modeled by letting the violation itself directly influence the
agents’ beliefs, desires and intentions. A concert is a concert,
one might say, but the audience might not want to come to
the next one if Jack the drummer suddenly starts playing
the double-bass.

idle play

〈0, 1, 1, 1〉

〈3〉

Figure 1: Jazz trio example (reflexive arrows omit-
ted).

4. PARTIAL COMPLIANCE IS TRACTABLE
In this section we will implement norms using anonymous

games, and use this to establish the main result, namely
that model checking Lnchatl against Definition 8 takes poly-
nomial time in the number of agents. We only show this for
individual norms η, but due to the representation given in
Equation 13, allowing us to represent any collective norm as
an individual norm, the result for collective norms follows
as an immediate corollary.

Now, for an individual normative system η and every q ∈
Q, we define the corresponding anonymous game Gη(q) =
(Σ,Aq, (µqi )i∈Σ) where for all i ∈ Σ and every s ∈ AΣ

q we
take

µqi (s) =

{
1 if s(i) ∈ Aq \ ηi(q, (#(y, s−i))y∈A)

0 otherwise
(19)

The following proposition follows easily, and we omit the
proof.

Proposition 2. Given an hcgs H and a state q ∈ Q,
s ∈ AΣ

q is a Nash equilibrium for Gη(q) if, and only if, s ∈
Lη(q), where Lη(q) is as defined in Equation 10.

In light of this fact, the following becomes a corollary
of the fact that computing Nash Equilibria in anonymous
games is tractable.

Theorem 1. Computing Pη(q) takes polynomial time (ac-
tually, is in TC0).

Proof. It follows from Proposition 2 and Equation 11
that the set Pη(q) is the set of profiles that can be induced
by a Nash Equilibrium of Gη(q). Since this set can be com-
puted in polynomial time using the characterization pro-
vided in Equation 8, the result follows. (For the claim in
the parentheses, we refer to [7] who show that computing
the set of profiles for Nash Equilibrium of an anonymous
game is in the complexity class TC0).

We now demonstrate that partial compliance can be rea-
soned with in the same efficient manner as full compliance.
That is, we must be able to compute the set PCη (q) defined
in Equation 16 in polynomial time for all q ∈ Q, C ⊆ Σ.
Given the correspondence to anonymous games, we can do

this if we can answer the following question in polynomial
time: given an anonymous game and a C-profile F , can F
be induced by a partial action-tuple for C players, s, such
that s can be extended to a Nash Equilibrium?.

Notice that a C-profile need not have this property even
if it can be extended to a profile that is induced by a Nash
Equilibrium. If the game is homogeneous this holds trivially,
but for anonymous games we cannot arbitrarily permute ac-
tions in the Nash Equilibrium to ensure that the desired
C-profile is induced by explicit actions for members of C,
and not just actions for members of some other coalition
of the same size. Notice that this corresponds exactly to
our observation about the special care that was needed in
defining partial compliance to individual norms.

For all anonymous games Γ = (Σ,A, (µi)i∈Σ) and all C ⊆
Σ we say that F ∈ PC(A) is a partial Nash profile for Γ
whenever

∃s ∈ NE(Γ) : (#(y, s � C))y∈A = F (20)

Then the problem we must solve is the problem of decid-
ing whether a given F ∈ PC(A) satisfies Equation 20. An
answer to this suffices to establish our main result since the
notion of a partial Nash profile corresponds to partial com-
pliance in the obvious way, c.f., Proposition 2. In particular,
we have the following.

Lemma 1. For any hcgs H, any individual norm η and
any q ∈ Q, we have F ∈ P qη (C) if, and only if, F ∈ P q(C)
is a partial Nash profile for Gη(q).

Testing by brute force whether Equation 20 holds for some
F ∈ PC(A) requires us to consider the potentially exponen-
tial set of all Nash Equilibria for the game Γ. However, we
can simplify this by making another application of Hall’s
Lemma, analogous to that used to establish Equation 8.
In particular, it is not hard to show that F ∈ PC(A) is
a partial Nash profile for Γ if, and only if, there exists some
F ′ ∈ PΣ\C(A) such that the following two conditions hold:

(1) : ∀P ⊆ A :
|{i ∈ C | ∃p ∈ P : p ∈ bi(sF+F ′)}| ≥

∑
p∈P

F (p)

(2) : ∀P ⊆ A :
|{i ∈ Σ \ C | ∃p ∈ P : p ∈ bi(sF+F ′)}| ≥

∑
p∈P

F ′(p)

(21)
Using Equation 7 these conditions can be checked in poly-

nomial time in the number of agents. Moreover, remember
that running through different C-profiles, functions from A
to |C|, is tractable by brute force when the number of actions
remains fixed. Hence our main technical result follows.

Theorem 2. For any hcgs H, any individual norm η
and any q ∈ Q, we can compute PCη (q) in polynomial time
in the number of agents.

From this it follows easily that model checking is trac-
table in the agents. In particular, a simple adaptation of
the model checking algorithm presented in [11], where we
quantify over PCχ (q,D) in place of PC(q), witnesses to the
truth of the following Theorem.

Theorem 3. Given an hcgs H, a norm χ ∈ {η, κ}, a
Lnchatl-formula ϕ a state q ∈ Q and a coalition C ⊆ Σ,
checking H,χ,C, q |= ϕ takes polynomial time in the number
of agents.
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5. CONCLUSIONS AND FUTURE WORK
We studied normative systems for concurrent game struc-

tures, exploiting recent ideas from algorithmic game theory
to ensure both tractability and greater expressiveness of the
norms we consider. The tractability result was made possi-
ble by introducing homogeneity on the level of the system
description, but as we showed, heterogeneous properties of
interacting agents may be regained in a structured way us-
ing norms. Hence we provide a new perspective on where it
is appropriate to encode heterogeneous properties of agents.
For complexity reasons, introducing heterogeneity as a non-
primitive notion, allowing it to arise in a limited way from
mechanisms that aim to describe certain types of interac-
tions between autonomous agents, might be more appropri-
ate than embracing heterogeneity as an irreducible modeling
assumption.

This perspective on heterogeneity also touches on points
that may have conceptual significance above and beyond
issues to do with complexity. In many cases homogeneity
and/or anonymity arise naturally, for reasons to do with
privacy, fairness, or lack of information. We point to [12]
for a further discussion on the conceptual significance of the
notion of homogeneity and anonymity in logics for multi-
agent systems.

An interesting direction for future research is to investi-
gate connections with cooperative game theory and social
choice theory. In this paper we used normal form games
to characterize and provide an incentive for a very simple
binary notion of compliance for both individuals and coali-
tions. Intuitively, the notion of compliance we formalized
was built on the idea that a coalition can be said to comply
if, and only if, it acts in such a way that it is possible for all
the remaining agents to act in accordance with the norm. A
very natural next step is to consider degrees of compliance,
where coalitions are rewarded on a gliding scale depending
on how easy it becomes for the rest of the agents to fulfill the
norm. This, in turn, leads us to cooperative game theory,
where the norms themselves can give agents an incentive to
form coalitions, to ensure higher rewards from better quality
of compliance.

On the technical side, we hope to generalize Lnchatl to al-
low quantification over coalitions, following the approach of
[4]. For the structures considered there, the decision prob-
lems that arise after introducing such quantification are gen-
erally not tractable. For homogeneous structures, on the
other hand, quantifying over coalitions should be possible,
even in the context of broader norms, by relying on a com-
pact representation. Essentially, a partitioning of coalitions
into a limited number of equivalence classes would ensure ef-
ficient model-checking procedures also when quantification
is involved.

We also hope to investigate more closely the link with
non-homogeneous structures. In particular, it seems that
we may in many cases be able to recognize different degrees
of homogeneity within systems that are already formulated
using heterogeneous means. Transforming such models to
homogeneous models, using norms to model heterogeneous
properties, is a challenge that will be considered.

In conclusion, we think broad norms on homogeneous
structures provide a logical formalism for modeling multi-
agent systems that have many attractive features, making
it a suitable template for continued formal work on norms
and strategic interaction.
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[4] T. Ågotnes, W. van der Hoek, and M. Wooldridge.
Robust normative systems and a logic of norm
compliance. Logic Journal of the IGPL, 18(1):4–30,
2009.

[5] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. Journal of the ACM
(JACM), 49(5):672–713, 2002.

[6] M. Blonski. Characterization of pure strategy
equilibria in finite anonymous games. Journal of
Mathematical Economics, 34:225–233, 2000.

[7] F. Brandt, F. Fischer, and M. Holzer. Symmetries and
the complexity of pure nash equilibrium. Journal of
Computer and System Sciences, 75(3):163–177, 2009.

[8] P. Hall. On representatives of subsets. Journal of the
London Mathematical Society, s1-10(1):26–30, 1935.

[9] W. Hoek, M. Roberts, and M. Wooldridge. Social laws
in alternating time: effectiveness, feasibility, and
synthesis. Synthese, 156(1):1–19, 2007.

[10] W. Jamroga and J. Dix. Do agents make model
checking explode (computationally)? In M. Pechoucek,
P. Petta, and L. Z. Varga, eds., Multi-Agent Systems
and Applications IV (LNAI Volume 3690), 2005.

[11] T. Pedersen, S. Dyrkolbotn, P. Kaźmierczak, and
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