
Fair Assignment Of Indivisible Objects
Under Ordinal Preferences

Haris Aziz Serge Gaspers Simon Mackenzie Toby Walsh
NICTA and UNSW Australia

2033 Sydney, Australia

{haris.aziz, serge.gaspers, simon.mackenzie, toby.walsh}@nicta.com.au

ABSTRACT

We consider the discrete assignment problem in which agents
express ordinal preferences over objects and these objects
are allocated to the agents in a fair manner. We use the
stochastic dominance relation between fractional or random-
ized allocations to systematically define varying notions of
proportionality and envy-freeness for discrete assignments.
The computational complexity of checking whether a fair
assignment exists is studied systematically for the fairness
notions. We characterize the conditions under which a fair
assignment is guaranteed to exist. For a number of fair-
ness concepts, polynomial-time algorithms are presented to
check whether a fair assignment exists or not. Our algorith-
mic results also extend to the case of variable entitlements
of agents. Our NP-hardness result, which holds for several
variants of envy-freeness, answers an open problem posed by
Bouveret, Endriss, and Lang (ECAI 2010).

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms

Economics, Theory and Algorithms

Keywords

Game theory (cooperative and non-cooperative); Social
choice theory

1. INTRODUCTION
One of the most basic yet widely applicable problems in

computer science and economics is to allocate discrete ob-
jects to agents given the preferences of the agents over the
objects. The setting is referred to as the assignment problem
or the house allocation problem (see, e.g., [10, 22, 12, 15]). In
the setting, there is a set of agents N = {1, . . . , n}, a set of
objects O = {o1, . . . , om} with each agent i ∈ N expressing
ordinal preferences %i over O. The goal is to allocate the
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objects among the agents in a fair or optimal manner with-
out allowing transfer of money.1 The model is applicable to
many resource allocation or fair division settings where the
objects may be public houses, school seats, course enroll-
ments, kidneys for transplant, car park spaces, chores, joint
assets of a divorcing couple, or time slots in schedules.

In this paper, we consider the fair assignment of indivisi-
ble objects. Two of the most fundamental concepts of fair-
ness are envy-freeness and proportionality. Envy-freeness
requires that no agent considers that another agent’s allo-
cation would give him more utility than his own. Propor-
tionality requires that each agent should get an allocation
that gives him at least 1/n of the utility that he would get
if he got all the objects. When agents’ ordinal preferences
are known but utility functions are not given, then ordi-
nal notions of envy-freeness and proportionality need to be
formulated. We consider a number of ordinal fairness con-
cepts. Most of these concepts are based on the stochastic
dominance (SD) relation which is a standard way of com-
paring fractional/randomized allocations. An agent prefers
one allocation over another with respect to the SD relation
if he gets at least as much utility from the former alloca-
tion as the latter for all cardinal utilities consistent with
the ordinal preferences. Although this paper is restricted to
discrete assignments, using stochastic dominance to define
fairness concepts for discrete assignments turns out to be
fruitful. The fairness concepts we study include SD envy-
freeness, weak SD envy-freeness, possible envy-freeness, SD
proportionality, and weak SD proportionality. We consider
the problems of computing or verifying a discrete assignment
that satisfies some ordinal notion of fairness.

Contributions.
We present a systematic way of formulating fairness prop-

erties in the context of the assignment problem. The logical
relationships between the properties are proved. Interest-
ingly, our framework leads to new solution concepts such
as weak SD proportionality that have not been studied be-
fore. The motivation to study a range of fairness properties
is that, depending on the situation, only some of them are
achievable. In addition, only some of them can be computed
efficiently.

We present a comprehensive study of the computational
complexity of computing fair assignments under ordinal
preferences. In particular, we present a polynomial-time al-

1The assignment problem is a a fundamental setting within
the wider domain of fair division or multiagent resource al-
location [9].
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gorithm to check whether an SD proportional assignment
exists even when agents may express indifferences. As a
corollary, for the case of two agents, we obtain a polynomial-
time algorithm to check whether an SD envy-free assignment
exist. The results generalize those of (Proposition 2, [5])
and (Theorem 1, [17]). For a constant number of agents,
we propose a polynomial-time algorithm to check whether a
weak SD proportional assignment exists. As a corollary, for
two agents, we obtain a polynomial-time algorithm to check
whether a weak SD envy-free or a possible envy-free assign-
ment exists. Even for an unbounded number of agents, if the
preferences are strict, we characterize the conditions under
which a weak SD proportional assignment exists. We show
that the problems of checking whether possible envy-free, SD
envy-free, or weak SD envy-free assignments exist are NP-
complete. The statement regarding possible envy-freeness
answers an open problem posed in [5]. All our computa-
tional results are summarized in Table 1.

Finally, we show that many of our algorithms also work
when agents have different entitlements over the objects.
Our study highlights the contrasts in the following set-
tings: i) randomized/fractional versus discrete assignments,
ii) strict versus non-strict preferences, and iii) multiple ob-
jects per agent versus a single object per agent

Verify Exists

All the concepts in P in P for constant m (Remark 4)

Weak SD proportional in P
in P for strict prefs (Th. 6)
in P for constant n (Th. 7)

SD proportional in P in P (Th. 5)

Weak SD envy-free in P
NP-complete (Th. 10)
in P for strict prefs
in P for n = 2 (Cor. 2)

Possible envy-free in P
NP-complete (Th. 10)
in P for strict prefs [5]
in P for n = 2 (Cor. 2)

SD envy-free in P
NP-complete even for strict prefs [5]
in P for n = 2 (Cor. 1)

Table 1: Complexity of fair assignment of indivisible
goods for n agents and m objects. The results in bold
are from this paper.

2. RELATED WORK
Proportionality and envy-freeness are two of the most es-

tablished fairness concepts. Proportionality dates back to
at least to the work of Steinhaus [20] in the context of cake-
cutting. It is also referred to as fair share guarantee in the
literature [16]. A formal study of envy-freeness in microeco-
nomics can be traced back to the work of Foley [11].

Computation of fair discrete assignments has been in-
tensely studied in the last decade within computer science.
In many of the papers considered, agents express cardinal
utilities for the objects and the goal is to compute fair as-
signments (see e.g., [10, 2, 14, 4]). The most prominent
paper is that of Lipton et al. [14] in which algorithms for ap-
proximately envy-free assignments are discussed. A closely
related problem is the Santa Claus problem in which the
agents again express cardinal utilities for objects and the
goal is to compute an assignment which maximizes the util-
ity of the agent that gets the least utility (see e.g., [1, 2]).
Just as in [5, 17], we consider the setting in which agents only

express ordinal preferences over objects. There are some
merits of considering this setting. Firstly, ordinal prefer-
ences require elicitation of less information from the agents.
Secondly, some of the weaker ordinal fairness concepts we
consider may lead to positive existence or computational re-
sults. Thirdly, some of the stronger ordinal fairness concepts
we consider are more robust than the standard fairness con-
cepts. Fourthly, when the exchange of money is not possible,
mechanisms that elicit cardinal preferences may be more
susceptible to manipulation because of the larger strategy
space. Finally, it may be the case that cardinal preferences
are simply not available.

The ordinal fairness concepts we consider are SD envy-
freeness; weak SD envy-freeness; possible envy-freeness; SD
proportionality; and weak SD proportionality. Not all of
these concepts are new but they have not been examined
systematically for discrete assignments. SD envy-freeness
and weak SD envy-freeness have been considered in the ran-
domized assignment domain [3] but not the discrete domain.
SD envy-freeness and weak SD envy-freeness have been con-
sidered implicitly for discrete assignments but the treatment
was axiomatic [8, 7]. A mathematically equivalent version of
SD envy-freeness and possible envy-freeness has been con-
sidered by Bouveret et al. [5] but only for strict preferences.
A concept equivalent to SD proportionality was examined
by Pruhs and Woeginger [17] but again only for strict pref-
erences. Interestingly, weak SD or possible proportionality
has not been studied in randomized or discrete settings (to
the best of our knowledge).

Envy-freeness is well-established in fair division, especially
cake-cutting. Fair assignment of indivisible goods has been
extensively studied within economics but in most of the pa-
pers, either the goods are divisible or agents are allowed to
use money to compensate each other (see e.g., [21]). In the
model we consider, we do not allow money transfers.

3. PRELIMINARIES
An assignment problem is a triple (N,O,%) such that

N = {1, . . . , n} is a set of agents, O = {o1, . . . , om} is a set of
objects, and the preference profile %= (%1, . . . ,%n) specifies
for each agent i his preference %i over O. Agents may be

indifferent among objects. We denote %i: E
1
i , . . . , E

ki
i for

each agent i with equivalence classes in decreasing order of
preferences. Thus, each set Ej

i is a maximal equivalence
class of objects among which agent i is indifferent, and ki is
the number of equivalence classes of agent i.

A fractional assignment p is a (n × m) matrix [p(i)(oj)]
such that p(i)(oj) ∈ [0, 1] for all i ∈ N , and oj ∈ O, and
∑

i∈N
p(i)(oj) = 1 for all j ∈ {1, . . . , n}. The value p(i)(oj)

represents the probability of object oj being allocated to
agent i. Each row p(i) = (p(i)(o1), . . . , p(i)(om)) represents
the allocation of agent i. The set of columns correspond to
the objects o1, . . . , om. A feasible fractional assignment is
discrete if p(i)(o) ∈ {0, 1} for all i ∈ N and o ∈ O.

A uniform assignment is a fractional assignment in which
each agent gets 1/n-th of each object. Although we will deal
with discrete assignments, the fractional uniform assignment
is useful in defining some fairness concepts. Similarly, we
will use the SD relation to define relations between assign-
ments. Our algorithmic focus will be on computing discrete
assignments only even though concepts are defined using the
framework of fractional assignments.

Given two fractional assignments p and q,
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p(i) %SD
i q(i), i.e., agent i SD prefers allocation

p(i) to allocation q(i) if
∑

oj∈{ok:ok%io}
p(i)(oj) ≥

∑

oj∈{ok:ok%io}
q(i)(oj) for all o ∈ O. He strictly SD

prefers p(i) to q(i) if p(i) %SD
i q(i) and ¬[q(i) %SD

i p(i)].
Although each agent i expresses ordinal preferences over
objects, he could have a private cardinal utility ui consistent
with %i: ui(o) ≥ ui(o

′) if and only if o %i o
′. The set of all

utility functions consistent with %i is denoted by U(%i).
An assignment p is envy-free if the total utility each

agent i gets for his allocation is at least much as he would
get if he had any another agent’s allocation: ui(p(i)) ≥
ui(p(j)) for all j ∈ N. An assignment is proportional if each
agent gets at least 1/n-th of the utility he would get if he
got all the objects: ui(p(i)) ≥

∑

o∈O
ui(o)/n.

We will require that the assignment is complete, that is,
each object is allocated. In the absence of this requirement
a null assignment is obviously envy-free. On the other hand
a null assignment is not proportional.

4. FAIRNESS CONCEPTS UNDER ORDI-

NAL PREFERENCES
We now define fairness notions that are independent of

particular cardinal utilities of the agents.

Proportionality.

1. (a) Weak SD proportionality : An assignment p sat-
isfies weak SD proportionality if no agent strictly
SD prefers the uniform assignment to his alloca-
tion: ¬[(1/n, . . . , 1/n) ≻SD

i p(i)] for all i ∈ N.

(b) Possible proportionality : An assignment satisfies
possible proportionality if for each agent, there
are cardinal utilities consistent with his ordi-
nal preferences such that his allocation yields
him as at least as much utility as he would
get under the uniform assignment. For each i ∈
N, there exists ui ∈ U(%i) such that ui(p(i)) ≥
∑

o∈O
ui(o)/n.

2. (a) SD proportionality : An assignment p satisfies SD
proportionality if each agent SD prefers his allo-
cation to the allocation under the uniform assign-
ment: p(i) %SD

i (1/n, . . . , 1/n) for all i ∈ N .

(b) Necessary proportionality : An assignment satis-
fies necessary proportionality if it is proportional
for all cardinal utilities consistent with the agents’
preferences.2 For each i ∈ N, and for each ui ∈
U(%i), ui(p(i)) ≥

∑

o∈O
ui(o)/n.

Envy-freeness.

1. (a) Weak SD envy-freeness: An assignment p sat-
isfies weak SD envy-freeness if no agent strictly
SD prefers someone else’s allocation to his:
¬[p(j) ≻SD

i p(i)] for all i, j ∈ N.

(b) Possible envy-freeness: An assignment satisfies
possible envy-freeness if for each agent, there are

2Pruhs and Woeginger [17] referred to necessary proportion-
ality as “ordinal fairness”.

SD Envy-freeness

SD proportionality

weak SD Envy-freeness

possible envy-freeness

weak SD proportionality

Figure 1: Inclusion relationships between fairness
concepts. E.g., every SD envy-free outcome is also
SD proportional. Any two concepts without any
path between them are incomparable.

cardinal utilities consistent with his ordinal pref-
erences such that his allocation yields him as at
least as much utility as he would get if he was
given any other agent’s allocation. For all i, j ∈
N, there exists ui ∈ U(%i) such that ui(p(i)) ≥
ui(p(j)).

(c) Possible completion envy-freeness: An as-
signment satisfies possible completion envy-
freeness [5] if for each agent, there exists a prefer-
ence relation of the agent over sets of objects that
is consistent with his preferences over objects such
that the agent prefers his allocation more than the
allocations of other agents. The concept has also
been referred to as not “envy-ensuring” [7].

2. (a) SD envy-freeness: An assignment p satisfies SD
envy-freeness if each agent SD prefers his allo-
cation to that of any other agent: p(i) %SD

i

p(j) for all i, j ∈ N.

(b) Necessary envy-freeness: An assignment satisfies
necessary envy-freeness if it is envy-free for all
cardinal utilities consistent with the agents’ pref-
erences. For each i, j ∈ N, and for each ui ∈
U(%i), ui(p(i)) ≥ ui(p(j)).

(c) Necessary completion envy-freeness: An as-
signment satisfies necessary completion envy-
freeness [5] if for each agent, and each transi-
tive closure of the responsive set extension of the
agents 3, each agent prefers his allocation more
than other agents’ allocations. The concept has
also been referred to as not envy-possible [7].

Possible completion envy-freeness and necessary comple-
tion envy-freeness were simply referred to as possible and
necessary envy-freeness in [5]. We will use the former terms
to avoid confusion.

5. RELATIONS BETWEEN FAIRNESS

CONCEPTS
We note that p(i) %SD

i p(j) if and only if for all utility
functions ui compatible with %i, ui(p(i)) ≥ ui(p(j)). Based

3In the responsive set extension, preferences over objects are
extended to preferences over sets of objects in such a way
that a set in which an object is replaced by a more preferred
object is more preferred.
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on this view of the SD relation we obtain the following equiv-
alences.

Theorem 1. The following equivalences hold between the
fairness concepts defined. i) Weak SD proportionality and
possible proportionality; ii) SD proportionality and necessary
proportionality; iii) possible envy-freeness and possible com-
pletion envy-freeness; iv) SD envy-freeness, necessary envy-
freeness and necessary completion envy-freeness.

It is well-known that when an allocation is complete and
utilities are additive, envy-freeness implies proportionality.
Assume that an assignment p is envy-free. Then for each
i ∈ N , ui(p(i)) ≥ ui(p(j)) for all j ∈ N . Thus, n ·ui(p(i)) ≥
∑

j∈N
ui(p(j)) =

∑

o∈O
ui(o). Hence ui(p(i)) ≥

∑
o∈O ui(o)

n
.

We can also get similar relations when we consider stronger
and weaker notions of envy-freeness and proportionality.

Theorem 2. The following relations hold between the
fairness concepts defined. i) SD envy-freeness implies SD
proportionality. ii) SD proportionality implies weak SD pro-
portionality. iii) Possible envy-freeness implies weak SD pro-
portionality. iv) For two agents, proportionality is equiva-
lent to envy-freeness; SD proportionality is equivalent to SD
envy-freeness; and weak SD proportionality, possible envy-
freeness and weak SD envy-freeness are equivalent.

In the next examples, we show that some of the inclusion
relations do not hold in the opposite direction and that some
of the solution concepts are incomparable.

Example 1. SD proportionality does not imply weak SD
envy-freeness. Consider the following preference profile:

1 : {a, b, c}, {d, e, f} 2 : {a, b, c, d, e, f}

3 : {a, b, c, d, e, f}

The allocation that gives {a, d} to agent 1, {b, c} to agent
2 and {e, f} to agent 3 is SD proportional. However it is
not weak SD envy-free since agent 1 is envious of agent 2.
Hence it also follows that SD proportionality does not imply
possible envy-freeness or SD envy-freeness.

Example 2. Weak SD envy-freeness neither implies pos-
sible envy-freeness nor weak SD proportionality. Consider
an assignment problem in which N = {1, 2, 3}, and there
are 4 copies of A, 6 copies of B, 1 copy of C and 1 copy of
D. Let the preference profile be as follows.

1 : A,B,C,D 2 : {A}, {B,C,D} 3 : {B}, {A,C,D}.

A B C D

1 1 1 1 1
2 3 0 0 0
3 0 5 0 0

Table 2: Discrete assignment in Example 2

Clearly p, the assignment specified in Table 2 is weak
SD envy-free. Assume that p is also possible envy-free.
Let u1 be the utility function of agent 1 for which he does
not envy agent 2 or 3. Let u1(A) = a; u1(B) = b;
u1(C) = c; and u1(D) = d. Since A ≻1 B ≻1 C ≻1 D,
we get that a > b > c > d. Since p is possible envy-
free, u1(p(1)) ≥ u1(p(2)) iff a + b + c + d ≥ 3a iff a ≤

b+c+d
2

which implies a < 3b
2
. Since p is possible envy-free,

u1(p(1)) ≥ u1(p(3)) iff a + b + c + d ≥ 5b iff a + c + d ≥
4b which implies a > 2b. This is a contradiction since both
a < 3b

2
and a ≥ 2b cannot hold.

Now we show that weak SD envy-freeness does not even
imply weak SD proportionality. Assignment p is weak SD
envy-free. If it were weak SD proportional then there exists
a utility function u1 such that u1(a)+u1(b)+u1(c)+u1(d) ≥
4u1(a)+6u1(b)+u1(c)+u1(d)

3
which means that u1(a)

3
+ u1(b) ≤

2u1(c)
3

+ 2u1(d)
3

. But this is not possible.

Example 3. Possible envy-freeness does not imply SD
proportionality. Consider an assignment problem with two
agents with preferences 1 : {a}, {b, c} and 2 : {a, b, c}. Then
the assignment in which 1 gets a and 2 gets b and c is pos-
sible envy-free. However it is not SD proportional, because
agent 1’s allocation does not SD dominate the uniform allo-
cation. A necessary condition for SD proportionality is that
m is a multiple of n and each agent gets exactly m/n objects.

Finally, we note that all notions of proportionality and
envy-freeness are trivially satisfied if randomized assign-
ments are allowed by giving each agent 1/n of each object.
As we show here, achieving any notion of proportionality is
a challenge when outcomes need to be discrete.

Next, we study the existence and computation of fair as-
signments. Even the weakest fairness concepts like weak SD
proportionality may not be possible to achieve: consider two
agents with identical and strict preferences over two objects.
This problem remains even if m is a multiple of n.

Example 4. A weak SD proportional assignment may
not exist even if m is a multiple of n. Consider the following
preferences:

1 : {a1, a2, a3, a4}, {b1, b2}

2 : {a1, a2, a3, a4}, {b1, b2}

3 : {a1, a2, a3, a4}, {b1, b2}

If all agents get 2 objects, then those agents that have to get
at least one object from {b1, b2} will get an allocation that is
strictly SD dominated by (1/3, . . . , 1/3). Otherwise, at least
one agent gets at most one object, and is therefore strictly
SD dominated by the uniform assignment.

If m is not a multiple of n, then an even simpler ex-
ample shows that a weak SD proportional assignment may
not exist. Consider the case when all agents are indifferent
among all objects. Then the agent who gets less objects than
m/n will get an allocation that is strictly SD dominated by
(1/n, . . . , 1/n).

We consider the natural computational question of check-
ing whether a fair assignment exists and if it does exist then
to compute it. The problem of verifying whether an assign-
ment is fair is easy for all the notions we defined.

Remark 3. It can be verified in time polynomial in n and
m whether an assignment is fair for all notions of fairness
considered in the paper. For possible envy-freeness, a linear
program can be used to find the ‘witness’ cardinal utilities of
the agents.

Remark 4. For a constant number of objects, it can be
checked in polynomial time whether a fair assignment exists
for all notions of fairness considered in the paper. This is
because the total number of discrete assignments is nm.
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6. SD PROPORTIONALITY
In this section, we show that it can be checked in poly-

nomial time whether an SD proportional assignment exists
even for the case of indifferences. The algorithm is via a
reduction to the problem of checking whether a bipartite
graph admits a feasible b-matching.

For the algorithm, we also require the machinery of b-
matchings. Let H = (VH , EH , w) be an undirected graph
with vertex capacities b : VH → N0 and edge capacities
c : EH → N0. Then, a b-matching of H is a function m :
EH → N0 such that

∑

e∈{e′∈EH :v∈e′} m(e) ≤ b(v) for each

v ∈ VH , and m(e) ≤ c(e) for all e ∈ EH . The size of b-
matching m is defined as

∑

e∈EH
m(e). We point out that

if b(v) = 1 for all v ∈ VH , and c(e) = 1 for all e ∈ EH then
a maximum size b-matching is equivalent to a maximum
cardinality matching. In a b-matching problem with upper
and lower bounds, there further is a function a : VH → N0.
A feasible b-matching then is a function m : EH → N0 such
that a(v) ≤

∑

e∈{e′∈EH :v∈e′} m(e) ≤ b(v). If H is bipartite,
then the problem of computing a maximum weight feasible
b-matching with lower and upper bounds can be solved in
strongly polynomial time (Chapter 35, [18]).

Theorem 5. It can be checked in polynomial time
whether an SD proportional assignment exists.

Proof. Consider (N,O,%). If m is not a multiple of n,
then no SD proportional assignment exists. In this case, in
each discrete assignment p, there exists some agent i ∈ N
who gets less thanm/n objects. Thus, the following does not
hold: p(i) %SD

i (1/n, . . . , 1/n). Hence we can now assume
that m is a multiple of n i.e., m = nc where c is a constant.
We reduce the problem to checking whether a feasible b-
matching exists for a graph G = (V,E). Recall that ki is
the number of equivalence classes of agent i. For each agent
i, and for each ℓ ∈ {1, . . . , ki} we introduce a vertex vℓi . For
each o ∈ O, we create a corresponding vertex with the same
name. Now, V = {v1i , . . . , v

ki
i : i ∈ N} ∪ O. Graph G is

bipartite with independent sets O and V \ O. Let us now
specify the edges of G.

• for each i ∈ N , ℓ ∈ {1, . . . , ki} and o ∈ O we have that

{vℓi , o} ∈ E if and only if o ∈
⋃ℓ

j=1 E
j
i .

We specify the lower and upper bounds of each vertex.

• a(vℓi ) =

⌈∑ℓ
j=1 |E

j
i
|

n

⌉

−
∑ℓ−1

j=1 a(v
j
i ) and b(vℓi ) = ∞ for

each i ∈ N and ℓ ∈ {1, . . . , ki};

• a(o) = b(o) = 1 for each o ∈ O.

For each edge e ∈ E, c(e) = 1.
Now that (V,E) has been specified, we then check whether

a feasible b-matching exists or not. If so, we allocate an
object o to an agent i if the edge incident to o that is as-
signed the value one is incident to a vertex corresponding
to an equivalence class of agent i. We claim that an SD
proportional assignment exists if and only if a feasible b-
matching exists. If a feasible b-matching exists, then each
o ∈ O is matched so we have a complete assignment. For
each agent i ∈ N , and for each Eℓ

i , an agent is allocated at

least
⌈

∑ℓ

j=1 |E
j
i |/n

⌉

objects of the same or more preferred

equivalence class. Thus, the assignment is SD proportional.

On the other hand if an SD proportional assignment
p exists, then p(i) %SD

i (1/n, . . . , 1/n) implies that for
each equivalence class Eℓ

i , an agent is allocated at least
⌈

∑ℓ

j=1 |E
j
i |/n

⌉

objects from the same or more preferred

equivalence class as Eℓ
i . Hence there is a b-matching in which

the lower bound of each vertex of the type vℓi is met. For any
remaining vertices o ∈ O that have not been allocated, they
may be allocated to any agent. Hence a feasible b-matching
exists.

Corollary 1. For two agents, it can be checked in poly-
nomial time whether an SD envy-free assignment exists for
the case of indifferences.

Proof. For two agents, SD proportionality implies SD
envy-freeness, and by Theorem 2, SD envy-freeness implies
SD proportionality.

Corollary 1 generalizes Proposition 10 of [5] which stated
that for two agents and strict preferences, it can be checked
in polynomial time whether a necessary envy-free assign-
ment exists.

7. WEAK SD PROPORTIONALITY
In the previous section, we examined the complexity of

SD proportional assignments. In this section we consider
weak SD proportionality.

Theorem 6. For strict preferences, a weak SD propor-
tional assignments exists if and only if one of two cases
holds: i) m = n and each agent gets an object that is not the
least preferred; ii) m > n. Moreover, it can be checked in
polynomial time whether a weak SD proportional assignment
exists when agents have strict preferences.

Proof. If m < n, at least one agent will not get any
object. Hence there exists no weak SD proportional assign-
ment. Hencem ≥ n is a necessary condition for the existence
of a weak SD proportional assignment.

Let us consider the case of m = n. Clearly each agent
needs to get one object. If an agent i gets an object
that is not the least preferred object o′, then his alloca-
tion p(i) is weak SD proportional. The reason is that
∑

o≻o′
p(i)(o) = 1 > |{o : o ≻ o′}|/m. Hence the follow-

ing does not hold: (1/m, . . . , 1/m) %SD
i p(i). On the other

hand, if i gets the least preferred object, his allocation is
not weak SD proportional since (1/m, . . . , 1/m) ≻SD

i p(i).
Hence, we just need to check whether there exists an assign-
ment in which each agent gets an object that is not least
preferred. This can be solved as follows. We construct a
graph (V,E) such that V = N ∪ O and for all i ∈ N and
o ∈ O, {i, o} ∈ E if and only if o /∈ min%i

(O). We just need
to check whether (V,E) admits a perfect matching or not. If
it does, the matching is a weak SD proportional assignment.

If m ≥ n+1, we show that a weak SD proportional assign-
ment exists. Note that a weak SD proportional assignment
is least likely to exist when all agents have identical pref-
erences. Allocate the most preferred object to the agents
in the following order 1, 2, 3, . . . n, n, n − 1 . . . , 1, . . . . Then
each agent i ∈ {1, . . . , n− 1} gets in the worst case his i-th
most preferred object. Hence 1 > i/n, thus the allocation
of agents in {1, . . . , n − 1} is weak SD proportional. As for
agent n, in the worst case he get his n-th and n+ 1st most
preferred objects. Since 2 ≥ n

n
+ 1

n
, the allocation of agent n

is also weak SD proportional. This completes the proof.
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Indifferences result in all sorts of challenges. Some ar-
guments that we used for the case for strict preferences do
not work for the case of indifferences. The case of strict
preferences may lead one to wrongly assume that given a
sufficient number of objects, a weak SD proportional assign-
ment is guaranteed to exist. However, if agents are allowed
to express indifference, this is not the case. Consider the
case where m = nc+ 1 and each agent is indifferent among
each of the objects. Then there exists no weak SD pro-
portional assignment because some agent will get less than
m/n objects. We first present a helpful lemma which follows
directly from the definition of weak SD proportionality.

Lemma 1. An assignment p is weak SD proportional if
and only if for each i ∈ N , i)

∑

o′%o
p(i)(o′) > |{o′ % o}|/n

for some o ∈ O; or ii)
∑

o′%o
p(i)(o′) ≥ |{o′ % o}|/n for all

o ∈ O.

We will use Lemma 1 in designing an algorithm to check
whether a weak SD proportional assignment exists when
agents are allowed to express indifference.

Theorem 7. For a constant number of agents, it can be
checked in polynomial time whether a weak SD proportional
assignment exists.

Proof. Consider (N,O,%). We want to check whether
a weak SD proportional assignment exists or not. By
Lemma 1, this is equivalent to checking whether there exists
a discrete assignment p, where for each i ∈ N , one of the
following ki conditions holds: for l ∈ {1, . . . , ki},

∑

o∈
⋃

l
j=1 E

j
i

p(i)(o) >
|
⋃l

j=1 E
j
i |

n
(1)

or the following ki + 1-st condition holds

p(i) ∼SD
i (1/n, . . . , 1/n). (2)

The ki+1-st condition only holds if each |Ej
i | is a multiple

of n for j ∈ {1, . . . , ki}.
We need to check whether there exists a discrete assign-

ment in which for each agent one of the ki + 1 conditions
is satisfied. In total there are

∏n

i=1(ki + 1) different ways
in which the agents could be satisfied. We will now present
an algorithm to check if there exists a feasible weakly SD
proportional assignment in which for each agent i, a certain
condition among the ki+1 conditions is satisfied. Since n is
a constant, the total number of combinations of conditions
is polynomial.

We define a bipartite graph G = (V,E) whose vertex set
is initially empty. For each agent i, if the condition number
is ℓ ∈ {1, . . . , ki} then we add a vertex vℓi . If the condition
number is ki +1, then we add ki vertices — Bj

i for each Ej
i

where j ∈ {1, . . . , ki}. For each o ∈ O, we add a correspond-
ing vertex with the same name. The sets O and V \ O will
be independent sets in G. We now specify the edges of G.

• {vℓi , o} ∈ E if and only if o ∈
⋃ℓ

j=1 E
j
i for each i ∈ N ,

ℓ ∈ {1, . . . , ki} and o ∈ O.

• {Bj
i , o} ∈ E if and only if o ∈ Ej

i for each i ∈ N ,
j ∈ {1, . . . , ki}, and o ∈ O.

We specify the lower and upper bounds of each vertex.

• a(vℓi ) =

⌊

|
⋃ℓ

j=1 E
j
i
|

n

⌋

+1 and b(vℓi ) = ∞ for each i ∈ N

and ℓ ∈ {1, . . . , ki};

• a(Bj
i ) = b(Bj

i ) =
|E

j
i
|

n
. for each Bj

i ;

• a(o) = b(o) = 1 for each o ∈ O.

For each edge e ∈ E, c(e) = 1. For each n-tuple of satis-
faction conditions, we construct the graph as specified above
and then check whether there exists a feasible b-matching.
A weak SD proportional assignment exists if and only if a
feasible b-matching exists for the graph corresponding to at
least one of the

∏n

i=1(ki + 1) combinations of conditions.
Since

∏n

i=1(ki+1) is polynomial if n is a constant and since
a feasible b-matching can be checked in strongly polynomial
time, we can check the existence of a weak SD proportional
assignment in polynomial time.

Corollary 2. For two agents, it can be checked in poly-
nomial time whether a weak SD envy-free or a possible envy-
free assignment exists or not.

Proof. For two agents, weak SD proportional is equiva-
lent to weak SD envy-free and possible envy-free.

8. ENVY-FREENESS
In this section we prove that checking whether a (weak)

SD envy-free or possible envy-free assignment exists is NP-
complete. The complexity of the second problem was men-
tioned as an open problem in [5]. Bouveret et al. [5] showed
that the problem of checking whether a necessary envy-free
assignment exists is NP-complete. The statement carries
over to the more general domain that allows for ties. We
point out that if agents have identical preferences, it can be
checked in linear time, whether an SD envy-free assignment
exists even when preferences are not strict. Identical prefer-
ences have received special attention within fair division (see
e.g., [6]).

Theorem 8. For agents with identical preferences, an
SD envy-free assignment exists if and only if each equiva-
lence class is a multiple of n.

Next, we show that when preferences are strict, weak SD
envy-freeness is computationally more tractable than SD
envy-freeness.

Theorem 9. For strict preferences, it can be checked in
time linear in n and m whether a complete weak SD envy-
free assignment exists or not.

Proof. Let the number of distinct top-ranked objects
be k. If m < 2n − k, then there is at least one agent who
receives an object that is not his top-ranked o and no further
items. Thus he necessarily envies the agent who received
o. If m ≥ 2n − k, then there exists a possible envy-free
assignment [5]. A linear-time algorithm to compute such
an assignment was outlined in [5]. By Remark 2, we know
that possible envy-freeness implies weak SD envy-freeness.
Hence there exists a weak SD envy-free assignment which
can be computed by the same algorithm.

Bouveret et al. [5] mentioned the complexity of possible
envy-freeness for the case of indifferences as an open prob-
lem. We present a reduction to prove that for all notions
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of envy-freeness considered in this paper, checking the exis-
tence of a fair assignment is NP-complete. The reason why
it applies to all envy-freeness notions is that each agent has
only two equivalence classes in his preferences.

Theorem 10. The following problems are NP-complete.
i) Check whether a weak SD envy-free assignment exists.
ii) Check whether a possible envy-free assignment exists.
iii) Check whether an SD envy-free assignment exists.

Proof. Membership in NP is shown by Remark 3. To
show hardness we use a reduction from X3C (exact cover by
3-sets). Exact cover by 3-sets consists of finding a subset X
from a set of clauses C containing 3-sets of elements from
S, such that each element of S is contained in exactly one
of the clauses in X. X3C is known to be NP-complete [13].
Consider an instance of X3C= (S,C) where S = {s1, ..., s3q}
and C = {c1, ..., cl}. Without loss of generality l ≥ q. An
easy way to see this is that if l < q then elements from S
will not be included in any of the clauses, implying there is
no exact cover. For the instance, we associate the following
assignment problem (N,O,%) where N = {a1, ..., a40l}
is partitioned into 3 sets N1, N2 and N3 with |N1| = l,
|N2| = 30l, |N3| = 9l and O = {o1, ..., o120l} is partitioned
into 3 sets O1, O2 and O3 with |O1| = 3l, |O2| = 90l and
|O3| = 27l. The set O1 is partitioned into 2 sets, OS

1 and
OB

1 , the first one corresponding to the set of elements of
S in the X3C instance and the second being a ‘buffer’ set.
We have |OS

1 | = 3q and |OB
1 | = 3l − 3q. We associate each

cj ∈ C with the j-th agent in N1. With each cj ∈ C we
also associate 9 consecutive agents in N3. The preferences
of the agents are defined as follows:

i : O2 ∪ ci, (O1\ci) ∪ O3 for i ∈ N1

i : O2, O1 ∪O3 for all i ∈ N2

i : f(i), O\f(i) for i ∈ N3

The function f : N3 → 2O is such that it ensures the
following properties: For each of the three elements e of cj ,
three out of the nine agents associated with cj list e as a
second choice object, and list cj\{e} as first choice objects.
Let us label these 3 agents a1, a2 and a3. The sets of objects
f(a1), f(a2) and f(a3) each exclude a distinct 1

3
of the buffer

objects OB
1 . For each i ∈ N3, f(i) ∩ (O2 ∪ O3) = Of . Let

Of contain 2
3
of the elements of O2 and 2

3
of the elements

of O3. Consider an assignment that is weak SD-envy-free
or possible envy-free or SD envy-free. We can make the
following observations:

1. Agents in N2 are allocated all objects from O2 and
none from O\O2. To show this, first consider the case
where 30l or more objects from O2 are assigned to
N\N2. In this case, at least one agent in N2 is envious
of an agent from N\N2: there will be an agent b1 in
N\N2 with three or more objects from O2, and there
will be an agent b2 in N2 with at most three elements,
at most two of which are from O2. This is because
if an agent has more than three objects, another has
at most two and if they all have three, some of those
will be objects from O1, and at least one agent from
N2 will have a second choice object. For all considered
notions of envy-freeness b2 will be envious of b1.

If 0 < z1 < 30l objects from O2 are assigned to N\N2,
we have 3 cases: i) z2 ≤ z1 objects from O\O2 are

assigned to N2. In this case an agent from N2 has
two or less objects, which implies he will be envious
of others in N2 ii) z2 = z1 objects from O\O2 are
assigned to N2. To not be envious of each other agents
from N2 will each receive two first choice objects and
one secondary choice object. At least one agent from
N1 will receive at least three objects from O2, making
agents in N2 envious of him. iii) z2 > z1 objects from
O\O2 are assigned to N2. In this case all agents from
N2 are given three or four objects. If an agent has two,
he will be envious as before. There are not enough
objects left for each agent in N\N2 to receive three or
more objects. Therefore one of these agents, labelled
b1 only has two items. Even if those two items are
most preferred items, he will be envious of at least one
agent in N1 because to any agent in N\N2 the ratio
of most preferred items assigned to N1 is higher than
1
3
. This implies at least one agent in N1 will have two

most preferred items according to b1, and since all in
N2 have at least three objects, b1 is envious of that
agent.

2. Each agent in N2 is allocated exactly three objects.
Since as shown above all and only O2 objects go to N2,
not all agents in N2 can have four objects. Therefore
if one has four, those without four objects will envy
him since they value all objects from O2 the same.

3. Each agent in N2 ∪ N1 have three objects. This is
because if an agent in N2∪N1 has four or more objects,
another has two or less. The argument in the first
observation still applies, and therefore this agent will
be envious of at least one agent from N2.

4. Agents in N1 will not be assigned any objects from O3

since they all consider them to be second choices. To
not envy agents in N2 agents in N1 have three of their
preferred choices.

5. Each agent in N2 ∪N3 are given two of N3’s common
preferred choices, and one of their second choices. This
is the only way to avoid envy from an element of N3

to at least one element of N2∪N3: if an element of N2

has two or three of N3 second choices, then another
has three preferred choices, and therefore at least one
of N3 will be envious of him. If an agent in N3 has
three preferred choices, then at least one has only one
preferred choice, and will be envious of the agent with
three preferred choices.

6. An agent from N1 does not have objects from OS
1 and

also OB
1 , since otherwise at least one agent from N3

will be envious of him. This is because of the condi-
tions satisfied by f . There are at least three agents in
N3 who see the one or two selected elements from the
three-set associated to the N1 agent as first choice ob-
jects. For any set of elements of size two or less in OB

1 ,
at least one of these three agents considers said set to
be composed of first choice object. Therefore there is
at least one agent inN3 who will be envious of an agent
in N1 who selects both from OS

1 and OB
1 , since he sees

this agent as having three preferred choices whilst he
only has two (according to the previous observation).

If there exists an exact cover of S by a subset of C, then
there is an envy-free allocation since agents corresponding to
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elements of C used for the cover will be given their preferred
items from OS

1 and the others will be given items from OB
1 .

If there does not exist an exact cover of S by a subset of
C then there does not exist an envy-free allocation. This is
because even if all the previous conditions are respected, at
least one agent from N1 gets a second choice object and is
envious of agents from N2. This follows from the fact that
no matter which agents of N1 we assign buffer objects to,
the remaining agents are not able to cover OS

1 with their sets
of most preferred objects. This completes the proof.

9. CONCLUSIONS
We have presented a taxonomy of fairness concepts under

ordinal preferences, and identified the relationships between
the concepts. Compared to transitive closures over sets of
alternatives to define fairness concepts [5], using cardinal
utilities and the SD relation to define fairness concepts not
only gives more flexibility (for example reasoning about en-
titlements) but can also be convenient for algorithm design.
We assumed that each agent has the same entitlement to
the objects. However, it could also be the case if an agent

i has entitlement ei, then ui(pi) ≥ ei∑
j∈N ej

∑
ui(o)

n
for pro-

portionality and ui(pi) ≥ ei
ej
ui(p(j)) for each j ∈ N for

envy-freeness. In the same way, possible and necessary fair-
ness can also be defined. Our two algorithms for possible
and necessary proportionality can also be modified to cater
for entitlements by replacing 1/n with ei∑

j∈N ej
whenever a

matching lower bound is specified for a vertex.
We focussed on fairness and did not consider efficiency. A

Pareto improvement over a weak SD proportional or SD pro-
portional assignment does not lose its proportionality and
can be implemented easily via trading cycles [19]. This may
not be the case for different notions of envy-freeness when
n > 2 since envy-freeness involves comparisons with other
agents’ allocations. Finally, none of the fairness concepts
are guaranteed to be non-empty. However for existence, one
can simply try to find the maximal (with respect to size or
set inclusion) set of agents for which the fairness condition
is satisfied. For maximal (SD or weak SD) proportionality
(with respect to set inclusion), our algorithms can again be
adapted.

The complexity of finding a weak SD proportional assign-
ment remains open for an unbounded number of agents with
non-strict preferences. It will be interesting to see how var-
ious approximation algorithms in the literature designed to
reduce envy or maximize welfare fare in terms of satisfy-
ing ordinal notions of fairness (see e.g., [2, 14, 4]). Finally,
strategic aspects of ordinal fairness is another interesting
direction.
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