Model Checking Degrees of Belief in a System of Agents

Giuseppe Primiero
Department of Computer Science
Middlesex University, London, UK

g.primiero@madx.ac.uk

Franco Raimondi
Department of Computer Science
Middlesex University, London, UK

f.raimondi@madx.ac.uk

Neha Rungta
NASA Ames Research Center
Moffett Field, CA 94035, USA
neha.s.rungta@nasa.gov

ABSTRACT

In this paper we present a unified framework to model and
verify degrees of belief in a system of agents. In particu-
lar, we describe an extension of the temporal-epistemic logic
CTLK and we introduce a semantics based on interpreted
systems for this extension. In this way, degrees of beliefs
do not need to be provided externally, but can be derived
automatically from the possible executions of the system,
thereby providing a computationally grounded formalism.
We leverage the semantics to (a) construct a model check-
ing algorithm, (b) investigate its complexity, (c¢) provide a
Java implementation of the model checking algorithm, and
(d) evaluate our approach using the standard benchmark of
the dining cryptographers. Finally, we provide a detailed
case study: using our framework and our implementation,
we assess and verify the situational awareness of the pilot
of Air France 447 flying in off-nominal conditions.

Categories and Subject Descriptors

D.2.4 [Software/program Verification]: Model Check-
ing; F.4.1 [Mathematical Logic]: Modal Logic

General Terms
Theory, Verification

1. INTRODUCTION

Suppose you draw a seven of diamonds from a deck of
cards, and your friend Alice draws another card that she
keeps secret. You obviously know that you have a seven
of diamonds, and you obviously do not know Alice’s card.
However, you can believe that Alice has an ace of spades
(nothing rules out this possibility). You can also believe
that Alice has a card whose suite is hearts. It also seems
natural to think that the latter belief has a “greater weight”
than the former or, equivalently, that you have a “greater
degree of belief” in the latter.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright (C) 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

133

A standard approach to belief quantification involves the
use of probabilities and the example of cards described above
is interpreted in terms of probabilities by almost all read-
ers. However, beliefs can be quantified using a number of
other approaches (see [14] for a detailed overview). One
way to characterise this literature is by referring to objective
and subjective assignments to degrees of belief. Subjective
assignments differentiate between actual probabilities and
agents’ beliefs, while objective assignments refer to actual
features in the real world (for instance when modelling a bi-
ased coin). In this paper we employ the term degrees of be-
lief and we avoid references to probabilities, thereby taking
what could seem a subjective approach. Nonetheless, there
is a connection between our approach to modelling degrees
of belief and probability distributions; this link will become
clear after the introduction of our technical machinery and
we will return to this connection in Section 6. For the time
being, however, we ask the reader to avoid interpreting the
weight of doxastic modalities in terms of probabilities, as
our aim here is to introduce a unified framework to model
and verify degrees of belief in a system of agents. More in
detail, our contributions can be summarised as follows:

e We provide a computationally grounded formalism to
reason about degrees of belief by introducing an ex-
tension of the logic CTLK whose semantics is based
on interpreted systems [10]. We name this extension
COGWED: a COmputationally Grounded, WEighted
Doxastic Logic.

e We introduce a model checking algorithm for COG-
WED by extending the standard algorithm for CTLK,
together with its complexity analysis.

e We implement and we release as open source a model
checker for COGWED and we use the benchmark of
the dining cryptographers to prove the feasibility of
our approach.

e We employ our model checker to verify the key prop-
erties of a safety-critical scenario.

The rest of the paper is organised as follows: in Section 2
we review the formalism of interpreted systems; in Section 3
we present COGWED and its model checking algorithm; in
Section 4 we introduce a model checker, its implementation
and its performance evaluation on the protocol of the dining

cryptographers. Finally, in Section 5 we introduce a moti-
vational example where we show how our approach can be
used to characterise the situational awareness of a pilot fly-
ing in off-nominal conditions. In particular, we consider the
model of the Air France 447 accident provided in [1] and we
evaluate the situational awareness of the pilot when a stall
occurs in the provided conditions. We show that there exist
cases in this model in which the plane is actually stalling,
but the pilot has a very low degree of belief about the stall,
a situation than can be formally analysed with our tool.

2. PRELIMINARIES
2.1 Interpreted Systems

We employ here the formalism of Interpreted Systems from [10]

to describe a system of agents.
In particular, IS = (G, R¢, V') where

o G = X L; is a finite set of global states, obtained as
1---m
the cartesian product of n sets of local states (one set

for each agent);

e R, € G x G is a temporal relation (it is assumed that
each state has at least a successor);

eV : AP — 29 is an evaluation function for atomic
propositions.

The formalism of interpreted systems presented in [10]
and employed in other model checkers such as [19, 13] also
includes the notions of agents’ actions and agents’ protocols:
to keep our presentation simple, we do not consider these
here, as they play no role in the semantics for the logic
presented below.

We define a set of n equivalence relations (one for each
agent): let g = (I1,...,1,) and ¢’ = (1, ...,7) be two global
states from G; we define gR;qg’" iff I; = I}, i.e., two global
states g,g’ are equivalent for agent i iff the local state of
agent i is the same in g and in ¢’ (notice that these are
the standard epistemic relations used in [10] to interpret
epistemic modalities). We define {g}r, to be the equivalence
class of the global state g w.r.t. R;.

Given an interpreted system 1.5 and a global state g, logic
formulas involving CTL and epistemic operators can be in-
terpreted as follows (we refer to [10] and references therein
for more details about CTL syntax and semantics):

IS,9FEp iff geV(p)

IS,9 = —¢ iff IS, g ¥ ¢;

IS,gE=enry it IS gF¢
and IS, g = v

I1S,g = EXp iff there exists ¢’ € G s.t. gR:g’
and IS, ¢ = ¢;

I1S,9 = EGyp iff there exists a path = = (g,91,...)
such that, for all ¢, IS, g; = »;

I1S,9 = E[pUvy] iff there exists a path 7 = (g,91,...)
and an index j such that 1S5,g; = ¢
and IS, g; = for all ¢ < j;

IS, gk= Kiyp iff gR:;g’ implies IS, ¢ = .

With slight abuse of notation we denote with V(¢) the
set of states of an interpreted system I.S in which ¢ holds.
This logic is usually named CTLK and can include group
epistemic modalities to reason about distributed and com-
mon knowledge. In the next section we will extend this logic
with doxastic operators.

134

2.2 Model checking Interpreted Systems

Given a logic formula ¢ and an appropriate model M for
©, in general terms model checking is the problem of estab-
lishing whether or not M k= ¢, usually in an automated way.
In the context of Interpreted Systems, model checking is the
problem of verifying that a given CTLK formula ¢ holds in
all the global states of an Interpreted System IS.

The standard model checking algorithm operates recur-
sively on the structure of the formula by “labelling” the
global states of the Interpreted System with the sub-formulae
that are true there. We refer to [7, 10] for additional details.

We remark here that, in many cases, the model is gen-
erated from a succinct description by means of model vari-
ables; in this case, adding a simple Boolean variable causes
the model to double in size. This is known as the state
explosion problem and the complexity of model checking
CTLK formulae against succinct representations requires de-
terministic algorithms that have an exponential complexity
in the size of the representation [20]. Symbolic algorithms
using Ordered Binary Decision Diagrams and reduction to
SAT problems have been successfully employed in various
tools [19, 13] for multi-agent system verification to tackle
this complexity. We return to this issue in Section 3.3.

3. MODEL CHECKING COGWED

In this section we introduce the syntax of COGWED, its
semantics with some key equivalences and a model checking
algorithm for it. We also present some complexity consider-
ations.

3.1 COGWED Syntax and Semantics

Let ~ be one of the following comparison operators: {<
,<,=,=,>}. The syntax of COGWED is as follows:

pu=p|—p|enry| Bl | EXe|EGp|E[pU¢] | Kip
Where:

e p is an atomic proposition from a set AP;

e { is an index for agents, ranging from 1 to n;

e 1 is a real number, 0 < x < 1;

EXp, EGy, E[oU] are standard CTL temporal op-
erators.

e K is the standard epistemic operator.

Essentially, COGWED extends CTLK with the additional
operators B® (one for each agent) and with comparison op-
erators. The formula B’ ¢ is read as “Agent i believes ¢
with a degree of belief ~ z. For instance, BZy2(p v q) is
read as “Agent 2 believes (p v ¢) with a degree of belief less
or equal than 0.2, and B2, 5(BLg.1(p)) means that “Agent
2 believes with degree exactly equal to 0.5 that Agent 1 be-
lieves with degree at most 0.1 that p” (where p could mean
“agent 2 has an ace of spade)”. As we will see below, BL ¢
is equivalent to K;o. COGWED formulae are evaluated in
Interpreted Systems by extending the definitions provided
in the previous section with the following:

18,9 Bi,p it MO0t
The intuition behind this definition is the following: the
degree of belief that an agent associates to a formula ¢ in

a global state g is the ratio between the number of states

~

© 00O ULk WN -

// We associate a set of equivalence
// classes to each agent:
Map <Integer , Set <Set<Gstate>>> rk;

// This method computes the set of
// states in which B _ ¢ is true
public Set<Gstate> satB(int i,
String op ,
Set<Gstate> previous = SAT(f);
Set<Gstate> result = new Set ();
for (Set<Gstate> eqClass: rk.get(i)) {
if (leaGlassoprevious| .y ¢

TeqClass|
result .add(eqClass);

}
}

return result;

Formula f,
float x) {

}

Figure 1: Java-style algorithm sketch

of {g}: (the equivalence class of g) in which ¢ is true and
the total number of states in {g};. For instance, considering
again the scenario in which you draw a seven of diamonds
from a deck of card, and Alice draws another card that she
keeps secret. If the deck has 52 cards overall, your belief
about the fact that Alice has an ace of diamonds has a degree
of 1/51, and your belief that Alice has a card whose suite
is hearts has a degree of 13/51. As a result, the following
formula is true:

Reader

BEST (Alice ace_spade) A BEg%'" (Alice hearts)

This definition of degrees of beliefs is computationally groun-

ded in the sense of Wooldridge [24]: modalities are inter-
preted directly on the set of possible computations of a
multi-agent system (equivalently: modalities are interpreted
on a Kripke model that corresponds to the possible compu-
tations of a multi-agent systems), and there is no need to
provide weights as part of the model. We refer to Section 6
for a comparison with other existing approaches to evaluate
degrees of belief.

The following formulas are valid in all COGWED models
as a result of simple arithmetic considerations:

1. BL,p — Bisygp for all y > x;
2. BL,po — B;yap for all y < x;
3. BL,p o Bl)~y

Finally, it is easy to see that B¢ is equivalent to K;p,
i.e., a degree of belief equal to 1 corresponds to the standard
epistemic operator. Dually, as a result of the third formula
above, it is also true that BLyp < K'(—¢p).

3.2 The algorithm

In this section we describe a model checking algorithm for
the operator B, . We do this by describing a method satB
that can be included in the standard model checking algo-
rithm for CTLK. A Java-like description of the algorithm is
provided in Figure 1.

The method employs the set of equivalence classes for each
agent; this set can be computed by partitioning the set of
global states (remember that each global state is a tuple of
local states). The result of this operation is the map rk
(line 3), which associates an agent ID (in the form of an

135

Integer variable) to a set of sets of global states (i.e., the set
of equivalence classes).

The method satB returns the set of global states satisfy-
ing the formula B’ . It starts by (recursively) calling a
method SAT(p) that computes the set of states in which the
formula ¢ is true (line 9). Then, it iterates over the equiv-
alence classes of agent ¢ (line 11). In line 12 the method
computes the ratio of the set in which the formula is true in
a given equivalence class over the size of the actual equiva-
lence class. If this ratio satisfies the appropriate relation ~,
then the method adds the whole equivalence class to the set
of states in which the formula is true (line 13). The intersec-
tion of sets of states can be performed with standard library
functions provided by Java; we refer to the source code avail-
able online at https://sites.google.com/site/mccogwed/
for additional details about the actual implementation. The
final result is returned at line 16.

As mentioned above, notice that the algorithm does not
operate on individual states. Instead, once the equivalence
classes are built, the algorithm works with sets of states.
We investigate the complexity of this algorithm in the next
section.

3.3 Complexity considerations

Model checking CTLK formulae in an interpreted system
takes time polynomial in the size of the formula and in the
size of the model [10]. All the operations in the algorithm
described in Figure 1 require at most polynomial time: com-
puting the set of equivalence classes, iterating over them,
and computing intersection of states. Therefore, the method
described above remains in the same polynomial complexity
class of the standard CTLK model checking algorithm.

As mentioned in Section 2.2, in practical applications the
actual state space is likely to explode as a result of the num-
ber of variables employed to model a given scenario. A num-
ber of techniques are available to manage large state spaces.
In particular, Ordered Binary Decision Diagrams (OBDDs)
are employed in model checkers for multi-agent systems such
as MCMAS [19] and MCK [13]. The algorithm satB of Fig-
ure 1 operates on set of states and only performs intersec-
tions of sets: these operations can be performed on the OB-
DDs for the sets of states, and therefore this part of the
algorithm can be executed symbolically. The computation
of equivalence classes needed at line 3, however, may require
in the worst case the explicit enumeration of all reachable
states, if all global states are epistemically different for a
given agent. This is rarely the case and, in fact, the num-
ber of equivalence classes is normally orders of magnitude
smaller than the number of global states. This is indeed the
case in the examples that we present below in Section 4.2
and in Section 5.

4. MC-COGWED: A TOOL TO VERIFY
COGWED PROPERTIES

In this section we describe a model checker for the verifi-
cation of COGWED properties, called Mc-COGWED. This
is a prototype implementation that is used to evaluate the
algorithm presented above on the standard example of the
dining cryptographers. The source code, the benchmarks of
the dining cryptographers and the card examples, and a pre-
compiled version are available at the link reported above.

© 00O UthA W

// Just two agents

N=2;

// The list of global states

Gl = (cl,c2);

G2 = (cl,c3);

G3 = (c2,cl);

G4 = (c2,c3);

G5 = (c3,cl);

G6 = (c3,c2);

// If meeded, a temporal relation
// can be specified using the following syntax:
/) RT = { (G1,G2),(G1,G3) ...}

// The labelling function:
agentl_has_cl = { G1, G2 };
agent2_has_cl = { G3, G5 };
ZaNERey|

Figure 2: Input file for Mc-COGWED (3 cards)

4.1 Implementation overview

Mc-COGWED is implemented entirely in Java. The in-
put language of the model checker is a simple description of
the states and transitions in a model. An example of this
language is provided in Figure 2: this example describes a
scenario with 2 agents and all the possible states resulting
from the agents picking a card from a deck with three cards.
More in detail: in line 2 we specify the number of agents.
The lines from 5 to 10 encode the set G of global states;
each global state is identified by an ID (G1 to G6) and is
described by a pair of local states as there are only 2 agents
in this example. For instance, S3 = (c2,c1) corresponds to
the global state in which the local state for the first agent
is ¢2 and the local state for the second agent is c1, i.e., the
global state in which the first agent has card 2 and the first
agent has card 1. We do not include a temporal relation
for this simple example but, as exemplified in the comment
at line 14, the temporal relation is represented by a list of
pairs of states (the protocol of the dining cryptographers be-
low contains a temporal relation). Finally, lines 17 and 18
provide an example definition of two atomic propositions.
The first atomic proposition is true when agent 1 has card 1
(in global states G1 and G2), while the second proposition is
true when agent 2 has card 1 (in global states G3 and G5).

Mc-COGWED parses the input file using ANTLR [21] and
builds an explicit representation of the model using standard
Java structures for sets and maps. The epistemic relations
are automatically generated from the structure of the global
states by imposing the equivalence of local states.

In addition to the input file for the model, Mc-COGWED
takes a COGWED formula as an input parameter from the
command line. We have implemented the model checking
algorithm for the minimal set of temporal operators EX, EG
and EU, for Boolean expressions and for the belief operator
B!,. Mc-COGWED operates recursively on the structure
of the formula and generates a set of (global) states that
can be either explicitly printed on screen, or the tool could
simply report the number of global states where the input
formula is true.

We provide a generator for the card example mentioned
above in the directory examples/ of the source code. The
generator takes as an input parameter the number of cards

136

3808

7e+86

Tine (s}

N, states

1 Ge+B6
2508 -

1 Se+86
2000 -

1 de+86

1500 -

Tine (s}
N. states

1 3e+d6

1888
1 2e+86

1 1le+b6

L L L
a
1668 15608 2008 25608

H. cards

Figure 3: Performance results for the card example.

to be generated and creates an input file similar to the one in
Figure 2. We report in Figure 3 the number of global states
(right scale) and the execution time (left scale) for a number
of cards ranging from 100 to 2500 for the verification of the
formula agentl has_cl — (KI(Bi%agentljlas,cl)).

This formula expresses the fact that, if agent 1 has card 1
from a deck of n cards, then agent 1 knows that agent 2 be-
lieves with a degree of belief less than ;155 that agent 1 has
card 1: this formula is true in all the states of the model and
forces the exploration of all the equivalence classes. Figure 3
shows that the tool is able to verify up to 2500 cards (corre-
sponding to a state space of approximately 7 million states)
in less than 45 minutes. The figure displays the quadratic
dependance of the total number of global states on the num-
ber of cards, and a polynomial of higher degree for the ver-
ification time: this is due to the two nested epistemic and
doxastic modalities together with the computation of two
set intersections. These and all the results below are ob-
tained on a Macbook Pro, 2.4 GHz Intel Core i7 with 16
GB RAM and running Mac OS X 10.8.5. Mc-COGWED
was compiled using Java version 1.7.0, revision 40, and the
Java virtual machine was configured with a heap size of 12
GB. A more detailed performance evaluation is carried out
in the next section.

4.2 Performance evaluation: the dining cryp-
tographers

In this section we conduct a more detailed evaluation of
performance for Mc-COGWED using the protocol of the
dining cryptographers. The protocol of the dining cryptog-
raphers is a standard benchmark in the multi-agent verifica-
tion community, as it employs temporal-epistemic specifica-
tions and it can be easily scaled up. The protocol, originally
described in [4], is exemplified by the following scenario:
three cryptographers sit at a round table at a restaurant. A
waiter informs them that the bill has already been paid for.
The cryptographers now wonder whether one of them paid
for the bill, or whether it was paid by their company. To
preserve the anonymity of the payer, they run the following
protocol: each one of them flips a coin behind a menu on
their right, so that this coin is only visible by the person

who flipped the coin and by the next cryptographer to the
right. In this way, each cryptographer sees two coins. After
the initial round of coin tosses, each cryptographer has to
announce whether s/he sees two equal coins (e.g, two heads
or two tails), or two different coins. However, if the cryptog-
rapher paid for the dinner, than s/he has to say the opposite
of what s/he sees. The key property of the protocol is that, if
there is an even number of cryptographers announcing that
the coins are different, then the company paid for the din-
ner; if the number of “different” utterances is odd, however,
then someone at the table paid for dinner. In this case, it is
possible to verify the key epistemic property:

odd A —paid;) — (K1(\/ paid;) A (A

i€{2,3} ie{2,3}
which encodes the fact that, if the first cryptographer did
not pay for the dinner and there is an odd number of “differ-
ent” utterances, then the first cryptographer knows that ei-
ther cryptographer 2 or cryptographer 3 paid for the dinner
(i-e., the cryptographer knows the disjunction), but cryp-
tographer 1 does not know that cryptographer 2 paid, nor
cryptographer 3. It is also possible to verify that the same
formula holds for any number of cryptographers greater than
2. In COGWED we can refine this formula and introduce a
degree of belief for the first cryptographer, in the case s/he
did not pay:

AG ((odd A —paid;) — </"\ Bé_nll)(paidi)>>

This formula employs the standard AG CTL-operator and
captures the fact that an odd number of utterances places an
equal degree of belief on the fact that any of the remaining
cryptographers could be the payer.

We have implemented a Java generator for the dining
cryptographers in Mc-COGWED; this generator is available
under examples/ in the source files and takes the number
of cryptographers as an input parameter. Each cryptogra-
pher is modelled with 4 local variables: value of left and
right coin (possible values: Empty, Head, Tail), whether the
cryptographer is the payer (Empty, Yes, No), and the parity
of “different” utterances (Empty, Even, Odd); the variables
are then concatenated into a single string representing the
actual local state. In the initial state the value of these vari-
ables is set to empty for all cryptographers. The generator
then runs the protocol by producing a random initial config-
uration and outputs a file in COGWED format with the set
of reachable global states, the temporal transition relation
for these states, and an appropriate labelling function for
the global states. This file is then passed to Mc-COGWED,
together with the formula described above.

We ran experiments with a number of cryptographers rang-
ing from 3 to 15. Experimental results are reported in Ta-
ble 1. The first column reports the number of cryptogra-
phers; the second column labelled with |S| reports the size of
the state space (in our encoding of the example this is simply
(3")™, where n is the number of cryptographers); the third
column |G| is the number of reachable states as computed
by our generator; the fourth column R; reports the number
of pairs in the transition relation; the fifth column reports
the time required to generate the set of reachable states and
to write this set to a file. The final column reports the time
required to parse this file and verify the formula reported
above by the actual Mc-COGWED model checker. The size

—-K! (Paidi))>

137

N [S] [G] [R¢] gen. verif.
time (s) | time (s)
3 5.10° 65 96 0.11 0.12
4 4.108 161 240 0.12 0.16
5 3.108 385 576 0.15 0.31
6 2.1010 897 1344 0.18 0.33
7 2.1012 2049 3072 0.25 0.46
8 | 1.15-10%5 4609 6912 0.38 0.49
9 | 1.50-10'7 | 10241 15360 0.51 0.83
10 | 1.22-10%° 22529 33792 0.67 1.27
11 | 9.85-10%0 | 49153 73728 1.17 4.16
12 | 7.98-10%2 | 106497 | 159744 1.94 6.74
13 | 6.46-10%* | 220377 | 344064 3.35 23.48
14 | 5.23-10%6 | 491521 | 737280 6.77 70.38
15 | 4.24-1028 | 1048577 | 1572864 14.39 175.16

Table 1: Dining cryptographers: results

of the generated file exceeds 300 Mb for 16 cryptographers
and this causes the ANTLR parser to run out of memory
before invoking the generation of epistemic relations and
the verification of the formula. In all the other cases, the
overall execution time obtained by adding the generation of
the reachable state space and the actual verification time
remains below 4 minutes even for 15 cryptographers; we
are therefore confident that a more compact representation
of the example using a more expressive modelling language
for COGWED models could enable the verification of even
larger state spaces.

These results are very encouraging, as they are compara-
ble to what highly optimised and symbolic model checkers
such as MCMAS and MCK can achieve for standard epis-
temic modalities (see, for instance, the results reported in
Table 2 of [19]). Our results thus show that reasoning about
degrees of beliefs in a system of agents is feasible even for
large state spaces, even for formulae involving both temporal
and doxastic modalities.

Besides being computationally tractable, in the next sec-
tion we show how model checking COGWED can have prac-
tical applications in analysing safety-critical scenarios.

S. CASE STUDY: THE AIR FRANCE 447 AC-
CIDENT

In the previous sections we have employed COGWED to
characterise two scenarios that are typical in security and
communication protocols. However, degrees of belief can be
used to reason formally about other specification patterns.
In this section we show how situational awareness can be
assessed using COGWED. Informally, situational awareness
is the ability of an agent (typically human) to determine
the correct internal state of some component (or some other
agent) based on his/her current beliefs. Situational aware-
ness is a key factor for decision makers in safety-critical sit-
uations, such as airplane pilots, medical doctors, firemen,
etc, and it has been investigated extensively in the past in
a number or research areas, including psychology [11]. Here
we focus on the aeronautic domain.

5.1 A model for AF447

The Air France flight 447 from Rio de Janeiro to Paris
is a thoroughly investigated accident involving the failure
of a sensor (a set of Pitot tubes), resulting in incorrect

speed readings and, through a sequence of events, to a high-

altitude stall situation that failed to be diagnosed by the
pilot(s). The BAE report on the accident (http://www.bea.

aero/en/enquetes/flight.af.447/flight.af.447.php) at-
tributes the main cause of the accident to the inexperience
of the pilot, who was not able to assess the actual speed of
the airplane and, more crucially, the stall situation.

We employ here a Java simulation model of the scenario
taken from [1] and we modify it to generate a set of reach-
able states using the approach presented in [17]. The set of
reachable states obtained is then encoded in Mc-COGWED
input. We remark that our model does not aim at being an
accurate representation of the accident; instead, our aim is
to show the capabilities of COGWED in analysing situation
awareness. In our model, a plane and its environment are
characterised by:

e an actual external temperature (low, medium, high);

e an actual speed (very low, low, medium, high, very
high);

e an actual vertical speed (Climbing, null, Descending);

e an actual altitude (encoded using flight levels, such as
FL200, FL380 and FL450);

e an actual attitude (going up, flat, down);

e an actual thrust level (auto, 20%, 50%, TOGA, full.
“TOGA” is an auto-thrust level corresponding to the
thrust required for Take-Off or a Go-Around landing)

In the actual situation the pilot has access to a number of
systems but he had to rely on the output of those systems
to diagnose the state of the plane. We characterise the local
states of the pilot by means of:

e observed temperature;

observed speed;
e observed vertical speed;
e observed altitude;

observed attitude.

All these values are observed by means of sensors, some
of which may fail. When a sensor is broken, the observed
value of a parameter may differ from the actual value. Ad-
ditionally, a plane includes:

e an auto pilot to which the pilot has direct access, i.e.,
the pilot can observe whether the auto pilot is engaged
or not, and we assume that the auto pilot does not fail
(but the pilot may not know what caused the auto-
pilot to disengage).

e a set of Pitot tubes that may be frozen when the tem-
perature is low (but not necessarily). If the Pitot
tubes are frozen, then the speed sensor is broken (but
the speed sensor could be broken even when the Pitot
tubes are not frozen).

138

e a stall warning (in the form of audio message or stick
shaking, depending on the causes of the stall). Notice
that the stall warning disengages when the speed is very
low (below 60 kt), even if the plane could be actually
stalling. We assume that the stall warning signal does
not fail, i.e. a warning always corresponds to stalling
conditions.

We model the behaviour of the pilot based on the pro-
cedures required in the various cases. For instance, if the
observed speed is very high (a potentially very dangerous
situation) the pilot reduces thrusts, and if the stall warning
is on, the pilot modifies attitude and thrust appropriately.
The Java simulation modifies the actual values of the air-
plane characteristics according to pilot’s actions and stan-
dard physics laws, generating new states every time a value
changes.

To generate the set of possible states for this scenario,
we start from a situation in which the plane is flying at
flight level 380 (corresponding to 38,000 feet), the thrust
is 60%, the auto pilot is engaged, the stall warning is off,
attitude is flat, temperature is medium and all sensors are
working correctly. We then inject failures in the sensors and
we generate a COGWED model covering all possible com-
binations reachable from the initial state. The generation is
achieved by running the Java code developed in [1] and by
discretizing the continuous variables where required (in this
case: speed, vertical speed, attitude, altitude, temperature).
The number of possible discretized states is 2 - 108, of which
approximately 1.6 - 10° are reachable from the initial state
described above.

We can now use Mc-COGWED to evaluate the fact that
the pilot is aware of a stall. In particular, we want to assess
the degree of belief of a stall situation. To this end, we
employ the following formula:

EF (actualStall A BE)%s (actualStall))

This formula employs the standard EF CTL-operator and
encodes the fact that there exists a state reachable from the
initial state, such that the plane is actually stalling, but in
that specific state the pilot believes that the stall is actually
occurring with a degree of less than 5%: this formula is true
in 25 states in the model. In fact, we can check that there
are 5 stalling states in which the pilot believes in a stall with
a degree of less than 1.5%. These are very interesting con-
figurations that capture what may have happened on board
of AF447: in these 5 states, the speed sensor is faulty (as a
result of the Pitot tubes being frozen) and may report wrong
measures, the attitude is UP, the speed is very low, and as
a result of this low speed the stall warning remains silent.
Notice that, in these specific cases, modifying the attitude to
descend results in an increase in speed of the airplane, there-
fore re-starting the stall warning in the cabin: this is even
more confusing for the pilot, as a manoeuvre that reduces
the likelihood of stalling in fact generate a stall warning!

The generation of all the discretized states and its encod-
ing as a Mc-COGWED input file require less than a minute,
and Mc-COGWED can verify the formula encoding situa-
tional awareness for the stall situation in less than 8 seconds.

We argue that the doxastic pattern above can be used to
characterise (the lack of) situational awareness in the general
case: the formula

P A 32590

is true in states in which ¢ holds, but agent i has a degree of
belief less than ¢ that this is indeed the case. The parameter
§ could be configured depending on the specific domain, and
can be interpreted as a measure of situational awareness.

In the AF447 scenario, it is interesting to see how the
situational awareness of a stall could be increased. The dis-
engagement of the stall warning at low speed is justified by
the necessity of performing low-speed operations close to the
ground and to avoid spurious warnings, for instance when
taking off or while landing; this, however, results in the pi-
lot not being able to diagnose a stall at very low speed in
other conditions. To address this issue, an additional visual
indicator of stall warning with low speed readings could be
added to the cockpit: this would be similar to ABS warn-
ings on certain car models that remain active under 10 MPH.
The additional indicator would reduce the number of possi-
ble worlds that the pilot considers possible, thereby increas-
ing the minimum value of ¢ for which the formula above
is true. This is exactly in line with the recommendations
of the BAE to modify the stall management procedures on
Airbuses, by re-designing the Primary Flight Display out-
put and by adding additional training requirements in high-
altitude stalling conditions.

6. RELATED WORK

Formalisms to model degrees of belief have been investi-
gated in the past by a number of authors. Dempster-Shafer
belief functions [23] are among the most common approaches
to assign a mass to beliefs and to combine belief functions.
This formalism is a classical example of subjective assign-
ment in which plausibility can be modelled differently from
probability. We refer to [14] for other approaches to mod-
elling degrees of belief subjectively. In all these formalisms,
however, the function associating a weight to a belief needs
to be externally provided, for instance by employing histor-
ical data or other means; this is a key difference with our
approach, where degrees are computed as the ratio between
two sets of possible worlds.

The idea of evaluating degrees of belief as the ratio be-
tween possible worlds is not new: in the formalism of ran-
dom worlds [2] degrees of belief are computed using propor-
tion expressions of the form ||¢(z)|¢(x)||. These expressions
denote the proportion of domain elements satisfying ¢ w.r.t.
those satisfying 1 in the domain of a knowledge base. Con-
ditional expressions are used in [2] to evaluate the weight
of beliefs in knowledge bases and are shown to satisfy a set
of desiderata for default reasoning. While “computation-
ally grounded” in the sense that degrees of belief are not
provided externally, computing degrees of belief using ran-
dom worlds is an undecidable problem in the general case.
Moreover, there does not seem to be a tractable solution to
add temporal reasoning to this formalism as we do here (as
exemplified in the case of the dining cryptographers). Addi-
tionally, another key difference with our approach is that we
provide a formal language to express degrees of belief for a
system of agents and we are not limited to the single agent
case. Along similar lines, the work in [12] introduces plau-
sibility measures that are used to justify a set of axioms for
default reasoning. More recently, the work in [15] addresses
decision making in terms of weighted sets of probabilities
by introducing an axiomatization and by providing dynamic
decision making procedures.

A language that combines first-order logic and probabil-

139

ity in finite domains is introduced in [22] using Markov
Logic Networks (MLN): similarly to [2], knowledge bases
are employed as the underlying semantics, and weights are
associated to formulae in the KB. In the case of finite do-
mains weights can be learned using a set of algorithms and
the authors show that MLN can tackle real scenarios. The
work in [8] presents the logic Pr K D45, whose syntax is very
similar to COGWED. The semantics of this logic relies on
externally-provided probability measures over finite bases;
the authors present an axiomatization and a decision proce-
dure for this logic but no model checking algorithm. The key
differences with our work are the different semantics based
on interpreted systems and the inclusion of multiple agents
and temporal modalities, in addition to a dedicated model
checking tool.

In the multi-agent system community there have been
a number of works addressing the verification of doxastic
modalities, such as the Jason tool [3] and the AIL+AJPF
framework [9]. These two works address BDI architectures
and are capable of verifying “standard” (i.e., non-weighted)
doxastic operators. The tool MCK [13] has recently been ex-
tended to include probabilistic reasoning. In this tool prob-
abilities are assigned to temporal relations; the tool is able
to verify only the probability of Boolean expressions, possi-
bly nested in an X (next-state) temporal operator. Proba-
bilities over temporal relations are also analysed using the
logic PCTL in the well known tool PRISM [18], which has
recently been extended to verify rPATL [5, 6]. A logic to
reason about probabilistic knowledge and strategies is also
described in [16]: in this work probabilities are associated
to temporal relations and to observations as well. Our key
difference is again in the definition of degrees of belief in
terms of possible worlds.

More importantly, the PRISM and MCK tool and the ap-
proach in [16] all employ probabilities over transitions. As
mentioned in the introduction, we refer instead to degrees
of belief. The relationship between these two concepts has
been investigated in [2] for a scenario very similar to ours,
where degrees are computed as the ratio between two sets
of possible worlds. Similarly to this work, in our setting all
the possible worlds are equally likely and we do not model
probabilities of transitions. Essentially, our approach adopts
the principle of indifference by Bernoulli and Laplace. As
described in [2], a uniform distribution for possible worlds is
the one that maximizes entropy. In turn, this corresponds to
the least amount of information about the probability dis-
tribution of epistemically equivalent worlds. In other words,
we start from an unknown objective assignment of probabil-
ities to transitions and we build a subjective assignment of
degrees of belief to agents according to this unknown objec-
tive assignment; agents’ degrees of belief can then be inter-
preted using a computationally grounded evaluation.

7. CONCLUSION

In this paper we have introduced COGWED, an extension
of CTLK to reason about degrees of belief in a system of
agents. We have introduced a computationally grounded se-
mantics based on Interpreted Systems, we have presented a
model checking algorithm for COGWED and we have inves-
tigated its complexity, showing that model checking COG-
WED has the same complexity of model checking CTLK. To
validate our claims, we have implemented and made publicly
available Mc-COGWED, a Java-based explicit state model

checker, and we have assessed the performance of our algo-
rithm against the standard benchmark of the dining cryp-
tographers. The results obtained are very encouraging: our
prototype was able to verify up to 15 cryptographers, a fig-
ure comparable to state-of-the-art model checkers for multi-
agent systems.

To prove the applicability of COGWED to real scenarios
we have assessed the situational awareness of aircraft pilots
flying in off-nominal conditions, obtaining results that are in
line with BAE recommendations. Finally, we have presented
a detailed review of related work, highlighting our contri-
butions and discussing the relationship between degrees of
belief as modelled in COGWED and probability measures
over temporal transitions.

As mentioned in the previous section, our approach con-
siders all the possible worlds equally likely: this is the result
of ignoring the probability distribution of temporal transi-
tions. We are currently working at incorporating this in-
formation into the doxastic characterisation of agents. In
particular: what can be said when the pilot knows that a cer-
tain sensor has a higher probability of failure than another
sensor? What could be said about the resulting degrees of
belief?

8. REFERENCES

[1] A. Agogino and G. Brat. Statistical analysis of flight
procedures. Technical report, NASA Ames Research
Center, Moffett Field, Mountain View (CA), 2011.
Fahiem Bacchus, Adam J. Grove, Joseph Y. Halpern,
and Daphne Koller. From statistical knowledge bases
to degrees of belief. Artificial Intelligence, 87:75-143,
1996.

Rafael H. Bordini, Jomi Fred Hiibner, and Michael
Wooldridge. Programming Multi-Agent Systems in
AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

David Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability.
Journal of Cryptology, 1:65-75, 1988.

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and
A. Simaitis. PRISM-games: A model checker for
stochastic multi-player games. In N. Piterman and

S. Smolka, editors, Proc. 19th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’13),
volume 7795 of LNCS, pages 185-191. Springer, 2013.
Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska,
David Parker, and Aistis Simaitis. Automatic
verification of competitive stochastic systems. Formal
Methods in System Design, 43(1):61-92, 2013.
Edmund M Clarke, Orna Grumberg, and Doron A
Peled. Model checking. MIT press, 1999.

Nivea de Carvalho Ferreira, Michael Fisher, and
Wiebe Van Der Hoek. Specifying and reasoning about
uncertain agents. International Journal of
Approzimate Reasoning, 49(1):35-51, 2008.

Louise A Dennis, Michael Fisher, Matthew P Webster,
and Rafael H Bordini. Model checking agent
programming languages. Automated Software
Engineering, 19(1):5-63, 2012.

Ronald Fagin, Joseph Y Halpern, Yoram Moses, and
Moshe Y Vardi. Reasoning about knowledge. MIT

2]

[10]

140

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

23]

[24]

press Cambridge, 1995.

Han Tin French, Elizabeth Clarke, Diane Pomeroy,
Melanie Seymour, and C Richard Clark.
Psycho-physiological measures of situation awareness.
Decision Making in Complex Environments, page 291,
2007.

Nir Friedman and Joseph Y Halpern. Plausibility
measures and default reasoning. Journal of the ACM,
48(4):648-685, 2001.

Peter Gammie and Ron Van Der Meyden. MCK:
Model checking the logic of knowledge. In Computer
Aided Verification, pages 479-483. Springer, 2004.
Joseph Y Halpern. Reasoning about uncertainty. The
MIT Press, 2003.

Joseph Y. Halpern and Samantha Leung. Weighted
sets of probabilities and minimaxweighted expected
regret: New approaches for representing uncertainty
and making decisions. In Proceedings of the
Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, Catalina Island, CA, USA, August 14-18,
2012, pages 336-345, 2012.

Xiaowei Huang and Cheng Luo. A logic of
probabilistic knowledge and strategy. In International
conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’13, Saint Paul, MN, USA, May
6-10, 2013, pages 845-852, 2013.

Josie Hunter, Franco Raimondi, Neha Rungta, and
Richard Stocker. A synergistic and extensible
framework for multi-agent system verification. In
International conference on Autonomous Agents and
Multi-Agent Systems, AAMAS ’13, Saint Paul, MN,
USA, pages 869-876, 2013.

Marta Kwiatkowska, Gethin Norman, and David
Parker. Prism 4.0: Verification of probabilistic
real-time systems. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verification,
volume 6806 of Lecture Notes in Computer Science,
pages 585-591. Springer Berlin Heidelberg, 2011.
Alessio Lomuscio, Hongyang Qu, and Franco
Raimondi. Mcmas: A model checker for the
verification of multi-agent systems. In Ahmed
Bouajjani and Oded Maler, editors, Computer Aided
Verification, volume 5643 of Lecture Notes in
Computer Science, pages 682—688. Springer Berlin
Heidelberg, 2009.

Alessio Lomuscio and Franco Raimondi. The
complexity of model checking concurrent programs
against CTLK specifications. In Declarative Agent
Languages and Technologies IV, pages 29-42.
Springer, 2006.

Terence Parr. The Definitive ANTLR Reference:
Building Domain-Specific Languages. Pragmatic
Bookshelf, 2007.

Matthew Richardson and Pedro Domingos. Markov
logic networks. Machine learning, 62(1-2):107-136,
2006.

Glenn Shafer. A mathematical theory of evidence,
volume 1. Princeton university press Princeton, 1976.
Michael Wooldridge. Computationally grounded
theories of agency. In Proceedings of ICMAS,
International Conference of Multi-Agent Systems,
pages 13-20. IEEE Press, 2000.

