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ABSTRACT
Researchers have used Distributed Constraint Optimization
Problems (DCOPs) to model various multi-agent coordina-
tion and resource allocation problems. However, existing
DCOP algorithms have focused almost exclusively on imper-
ative programming techniques. This paper explores a new
direction, which is to develop algorithms that use declarative
programming, specifically logic programming, techniques.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Logic Programming ; I.2.11 [Artificial Intelli-
gence]: Distributed AI—Multiagent Systems
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1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs)

are problems where agents need to coordinate their value
assignments to maximize the sum of resulting constraint
utilities [6, 8, 9]. While the field has matured consider-
ably over the past decade, existing DCOP algorithms have
focused almost exclusively on imperative programming tech-
niques, where the algorithms define a control flow, that is, a
sequence of commands to be executed. In this paper, we are
interested in exploring a new direction, which is to develop
algorithms that use declarative programming techniques.

Declarative programs differ from imperative programs in
that declarative programs only specify the problem as a set
of logical rules to be solved without defining a specific control
flow. The declarative programming paradigm offers several
advantages, including a more compact representation of the
problem and a high level of elaboration tolerance. Using
a rule representation as an input allows a logical solver to
exploit the interactions between rules to prune the search
space, thus reducing the memory requirement and improving
the scalability of the system. Finally, a declarative program
is a more natural representation for solving problems that
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are originally defined by a set of rules (e.g., constraints in
functional form).

In addition to showing how one can formulate a DCOP
as a logic program, specifically an answer set program, we
also introduce an algorithm, called ASP-DPOP, which em-
ulates the computation and communication operations of
DPOP [8] via the use of Answer Set Programming (ASP).
Our experimental results show that, not only is ASP-DPOP
competitive compared to DPOP in terms of performance,
but it can also solve problems that DPOP fails to solve due
to memory limitations.

2. BACKGROUND
DCOP: A Distributed Constraint Optimization Problem
(DCOP) [6, 8, 9] is defined by 〈X ,D,F ,A, α〉, where X =
{x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is
a set of finite domains, where Di is the domain of vari-
able xi; F = {f1, . . . , fm} is a set of utility functions
(also called constraints), where each k-ary utility function
fi : Di1 ×Di2 × . . .×Dik 7→ N ∪ {−∞, 0} specifies the util-
ity of each combination of values of variables in its scope
(i.e., xi1 , . . . , xik ); A = {a1, . . . , ap} is a set of agents; and
α : X → A maps each variable to one agent. A solution is
a value assignment for all variables. Its utility is the evalu-
ation of all utility functions on that solution. The goal is to
find a utility-maximal solution.

DPOP: The Distributed Pseudo-tree Optimization Proce-
dure (DPOP) [8] is a complete DCOP algorithm and has
the following three phases:

• Pseudo-tree Generation Phase: DPOP calls existing
distributed pseudo-tree construction algorithms to con-
struct its pseudo-tree.

• UTIL Propagation Phase: Each agent, starting from
the leafs of the pseudo-tree, computes the optimal sum
of utilities in its subtree for each value combination of its
ancestor agents and propagates them to its parent. The
agent does so by summing the utilities in the UTIL mes-
sages received from its child agents and then projecting
out its own variables by optimizing over them.

• VALUE Propagation Phase: Each agent, starting
from the root of the pseudo-tree, determines the opti-
mal value for each of its variables and propagates them
to its children. The root agent does so using the UTIL
messages received in the second phase.

ASP: Let us now provide some general background on logic
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programming under the answer set semantics and Answer
Set Programming (ASP). Consider a logic language L =
〈C,P,V〉, where C is a set of constants, P is a set of predicate
symbols, and V is a set of variables; the notions of terms,
atoms, and literals are the traditional ones.

An ASP program Π is a set of rules of the form

c← a1, . . . , am, not b1, . . . , not bn (1)

where m ≥ 0 and n ≥ 0. Each ai and bi is a literal from
L, and each not bi is called a negation-as-failure literal (or
naf-literal). c can be a literal or omitted. If a rule contains
some variables, then it is called a non-ground rule. Other-
wise, it is called a ground rule. If n = 0 and m = 0, then the
rule is called a fact. If c is omitted, then the rule is called an
ASP constraint. The solution of a program, called an answer
set [3], is a set of consistent ground literals, representing a
stable model of the program. ASP solves a problem by en-
coding it as an ASP program whose answer sets correspond
one-to-one to the problem’s solutions [5, 7]. These answer
sets can be computed using answer set solvers [1, 2].

3. ASP-DPOP ALGORITHM
The overall idea underlying our approach is to capture the

structure of a DCOP in ASP—by mapping each individual
agent of a DCOP to an ASP program. The process of re-
solving the DCOP problem is fully distributed, and realized
by using a logic programming infrastructure (based on the
Linda model) for communication among agents.

In this paper, we introduce ASP-DPOP—a complete
ASP-based DCOP algorithm that emulates the computation
and communication operations of DPOP. Like DPOP, there
are also three phases in the operation of ASP-DPOP: the
pseudo-tree generation phase, the UTIL propagation phase,
and the VALUE propagation phase. At a high-level, each
agent ai in the system is composed of two main components:
the set of rules representing the DCOP agent, and a fixed
Prolog module that implements the actual extraction of so-
lutions and communication among agents during the prop-
agation phases. The two steps of propagation—generation
of a table to be sent from an agent to its parent in the
pseudo-tree during the UTIL propagation, and propagation
of variables assignments from an agent to its children in the
pseudo-tree during the VALUE propagation—are achieved
by computing solutions of two ASP programs.

4. EXPERIMENTAL RESULTS
We implemented two versions of the ASP-DPOP al-

gorithm. The first version, which we call “ASP-DPOP
(facts),” uses ground programs. The second version, which
we call “ASP-DPOP (rules),” uses non-ground programs.
We compare them against DPOP [8], their imperative-
programming-based counterpart on a 13-Bus power opti-
mization problem [4]. Figure 1 shows the runtime results.
ASP-DPOP is slower than DPOP when the domain size is
small and faster when the domain size is large. The run-
time of the ASP solver called by each ASP-DPOP agent
is roughly equivalent to the sum of the initialization time
(used to initialize the data structures) and the computation
time (used to solve the problem). The ratio of initializa-
tion time to computation time is larger for simpler problems
(i.e., smaller domain sizes). As such, the speedups gained
by the ASP solver in the computation time is lost in the
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Figure 1: Experimental Results

initialization time for the simpler problems. Additionally,
ASP-DPOP can solve problems that DPOP failed to solve
due to memory limitations.

5. CONCLUSIONS
In this paper, we explore the new direction of develop-

ing DCOP algorithms that use logic programming tech-
niques. Our proposed logic-programming-based algorithm,
ASP-DPOP, is shown to be experimentally faster DPOP, its
imperative programming counterpart, on CDMG optimiza-
tion problems with large domain sizes and is able to solve
some problems that DPOP failed to solve due to memory
limitations. In conclusion, we believe that these results show
that the declarative programming paradigm is a promising
new direction of research for DCOP researchers.
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