
GD-Gibbs: A GPU-based Sampling Algorithm for Solving
Distributed Constraint Optimization Problems

(Extended Abstract)
Ferdinando Fioretto, Federico Campeotto, Luca Da Rin Fioretto,

William Yeoh, Enrico Pontelli
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003, USA

{ffiorett,fcampeot,ldarinfi,wyeoh,epontell}@cs.nmsu.edu

ABSTRACT
Researchers have recently introduced a promising new class
of Distributed Constraint Optimization Problem (DCOP) al-
gorithms that is based on sampling. This paradigm is very
amenable to parallelization since sampling algorithms re-
quire a lot of samples to ensure convergence, and the sam-
pling process can be designed to be executed in parallel.
This paper presents GPU-based D-Gibbs (GD-Gibbs), which
extends the Distributed Gibbs (D-Gibbs) sampling algo-
rithm and harnesses the power of parallel computation of
GPUs to solve DCOPs. Experimental results show that GD-
Gibbs is faster than several other benchmark algorithms on
a distributed meeting scheduling problem.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI—Multia-
gent Systems

Keywords
DCOP; Sampling; Gibbs; GPU

1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs)

are problems where agents need to coordinate their value as-
signments to maximize the sum of resulting constraint utili-
ties [4, 7, 8]. Researchers have recently introduced a promis-
ing new class of approximation algorithms that is based on
sampling. The two current state-of-the-art DCOP sampling
algorithms are DUCT [6] and D-Gibbs [5]. These algorithms
have been shown to outperform existing local search algo-
rithms like DSA and MGM in terms of convergence rate
and the quality of the converged solution. The sampling
paradigm is very amenable to parallelization since sampling
algorithms require a lot of samples to ensure convergence,
and the sampling process can be designed to be executed in
parallel.

In this paper, we explore the use of general-purpose
Graphical Processing Units (GPUs), which are powerful par-
allel architectures that are readily available in the form of
Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

graphic cards in most modern computers, to parallelize the
sampling process of D-Gibbs. Specifically, we extend the D-
Gibbs [5] and DPOP [7] algorithms to GPU-based D-Gibbs
(GD-Gibbs), which harnesses the power of parallel compu-
tation of GPUs to solve DCOPs. It emulates the compu-
tation and communication operations of DPOP via the use
of GPUs to perform Gibbs sampling. Our experimental re-
sults on distributed meeting scheduling problems show that
GD-Gibbs is able to find better solutions up to two orders of
magnitude faster than MGM and MGM2 (two local search
DCOP algorithms).

2. BACKGROUND
DCOP: A Distributed Constraint Optimization Problem
(DCOP) [4, 7, 8] is defined by 〈X ,D,F ,A, α〉, where X =
{x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is
a set of finite domains, where Di is the domain of vari-
able xi; F = {f1, . . . , fm} is a set of utility functions
(also called constraints), where each k-ary utility function
fi : Di1 ×Di2 × . . .×Dik 7→ N ∪ {−∞, 0} specifies the util-
ity of each combination of values of variables in its scope
(i.e., xi1 , . . . , xik); A = {a1, . . . , ap} is a set of agents; and
α : X → A maps each variable to one agent. We use the no-
tation Xi to denote the set of variables mapped to agent ai.
A solution is a value assignment for all variables. Its util-
ity is the evaluation of all utility functions on that solution.
The goal is to find a utility-maximal solution.

Gibbs and Distributed Gibbs: The Gibbs sampling al-
gorithm [1] is a Markov chain Monte Carlo algorithm that
can be used to approximate joint probability distributions.
It generates a Markov chain of samples, each of which is cor-
related with previous samples. While the Gibbs algorithm
is designed to solve the maximum a posteriori (MAP) esti-
mation problem, it can also be used to solve DCOPs in a
centralized manner by mapping MAP estimation problems
to DCOPs [5]. The Distributed Gibbs (D-Gibbs) algorithm
extends Gibbs by tailoring it to solve DCOPs in a decen-
tralized manner [5]. The main difference between the two
algorithms is that D-Gibbs exploits conditional independent
subproblems by sampling the subproblems in parallel.

DPOP: The Distributed Pseudo-tree Optimization Proce-
dure (DPOP) [7] is a complete DCOP algorithm and has
the following three phases:

• Pseudo-tree Generation Phase: DPOP calls exist-

1339

|Xi| 10 25 50
wct st quality wct st quality wct st quality

DPOP timeout timeout - timeout timeout - timeout timeout -
MGM 3910 136 2766 19250 673 11652 8350 20716 36373
MGM2 9260 756 2783 59120 4384 11889 278240 20971 36491

GD-Gibbs 284 30 3173 3183 368 11884 34210 3439 42124

|Di| 12 24 48
wct st quality wct st quality wct st quality

DPOP 22230 9996 1332 timeout timeout - timeout timeout -
MGM 3810 113 1085 4050 145 2690 4720 276 6319
MGM2 6090 279 1134 9800 761 2645 23810 2549 6660

GD-Gibbs 214 22 1297 283 30 3186 363 41 7068

Table 1: Experimental Results

ing distributed pseudo-tree construction algorithms to
construct its pseudo-tree.

• UTIL Propagation Phase: Each agent, starting from
the leafs of the pseudo-tree, computes the optimal sum
of utilities in its subtree for each value combination of its
ancestor agents. The agent does so by summing the util-
ities in the UTIL messages received from its child agents
and then projecting out its own variables by optimizing
over them.

• VALUE Propagation Phase: Each agent, starting
from the root of the pseudo-tree, determines the optimal
value for its variables. The root agent does so using the
UTIL messages received in the second phase.

3. GPU-BASED DISTRIBUTED GIBBS
We now describe our GPU-based Distributed Gibbs (GD-

Gibbs) algorithm, which extends D-Gibbs and DPOP. At
a high level, its operations are similar to the operations of
DPOP except that the computation of the utility tables sent
by agents during the UTIL phase is done by sampling with
GPUs. The computation of each row in a utility table is
independent of the computation in the other rows, and GD-
Gibbs exploits this independence and samples the utility in
each row in parallel.

Like DPOP, there are also three phases in the operation
of GD-Gibbs. The first phase is identical to that of DPOP.
The second phase is similar to that of DPOP except that
each agent computes the best utility and the corresponding
solution for each row in the utility table in parallel. For
each row, the agent computes the best utility by executing
the Gibbs sampling procedure and takes multiple samples
in parallel. By the end of the second phase, the root agent
knows the overall utility for each combination of values of its
variables. It chooses its best value combination that results
in the maximum utility, and starts the third phase, which is
identical to that of DPOP.

4. RESULTS AND CONCLUSIONS
We compare GD-Gibbs against DPOP [7] (an optimal al-

gorithm) and MGM [3] and MGM2 [3] (sub-optimal algo-
rithms). To compare runtimes and solution qualities, we use
publicly-available implementations of MGM, MGM2, and
DPOP, which are all implemented on the FRODO frame-
work [2]. We run our experiments on a machine with two
Intel(R) Xeon(R) X5650 with 2.67GHz CPU and 16GB of
RAM; and 8 Tesla M2075 GPUs, each with 14 multiproces-
sors, 448 cores, and a clock rate of 1.15GHz. We measure

runtime using the wall clock time (wct) and the simulated
time (st) metrics and evaluate the algorithms on distributed
meeting scheduling problems.

Table 1 show the results, where we vary only one parame-
ter and fix the rest to their “default” values: |A| = 10, |Xi| =
10, |Di| = 24. We set the number of samples for the GD-
Gibbs algorithms to 100. The results show that GD-Gibbs
can find reasonably good solutions (within 5% error) up to
two orders of magnitude faster than MGM and MGM2.

In this paper, we take the first step towards harnessing
the power of parallel computation of GPUs to solve DCOPs.
We introduce the GD-Gibbs algorithm, which decomposes a
DCOP into independent subproblems that can each be sam-
pled in parallel by GPUs. Our preliminary results demon-
strate the potential for using GPUs to scale up DCOP al-
gorithms, which is exciting as GPUs provide access to hun-
dreds of computing cores at a very affordable cost.

5. REFERENCES
[1] S. Geman and D. Geman. Stochastic relaxation, Gibbs

distributions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6(6):721–741, 1984.

[2] T. Léauté, B. Ottens, and R. Szymanek. FRODO 2.0:
An open-source framework for distributed constraint
optimization. In Proc. of the Distributed Constraint
Reasoning Workshop, pages 160–164, 2009.

[3] R. Maheswaran, J. Pearce, and M. Tambe. Distributed
algorithms for DCOP: A graphical game-based
approach. In Proc. of PDCS, pages 432–439, 2004.

[4] P. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial
Intelligence, 161(1–2):149–180, 2005.

[5] D. T. Nguyen, W. Yeoh, and H. C. Lau. Distributed
Gibbs: A memory-bounded sampling-based DCOP
algorithm. In Proc. of AAMAS, pages 167–174, 2013.

[6] B. Ottens, C. Dimitrakakis, and B. Faltings. DUCT:
An upper confidence bound approach to distributed
constraint optimization problems. In Proc. of AAAI,
pages 528–534, 2012.

[7] A. Petcu and B. Faltings. A scalable method for
multiagent constraint optimization. In Proc. of IJCAI,
pages 1413–1420, 2005.

[8] W. Yeoh and M. Yokoo. Distributed problem solving.
AI Magazine, 33(3):53–65, 2012.

1340

