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1. INTRODUCTION
In a long-term work or experiment, a robot is usually re-

quired to dock on a charging station and recharging itself.
However, docking on a recharging station might not be al-
ways reliable. Even the most meticulous developed robot
system may have the possibility that sometimes would exe-
cute abnormally. In our work, we focus on the uncertainty
in the docking procedure. More formally, we use a Bernoulli
distribution to model the events of successfully docking or
not in one trial. Because of the uncertainty in a docking
procedure, the robot may need to try multiple times till
successfully docking the station. Hence it is very important
for a robot to a priori consider the uncertainty in the dock-
ing procedure so that it can optimally decide when it needs
to recharge and how much energy it needs to charge.

Previous research work that related to recharging includes
[4], [5], [2], [3], and [1]. They used a battery threshold as
a flag to make decisions on when to go back for recharging.
Instead of using a static threshold, another strategy is the
utilize adaptive method [7], and [6]. All previous methods
do not consider uncertainty in the procedure when the robot
is trying to docking the recharging station. In our work, we
assume there is uncertainty in docking such that a robot
may need several attempts before successfully docking the
recharging station.

The main contribution of our work is that we designed a
probabilistic recharging model, which considers the uncer-
tainty in the recharging procedure. With our probabilistic
recharging model, we can fast and accurately estimate the
average reward that the robot may gain in real execution.
To the best of author’s knowledge, this is the first model
that tolerates imperfect docking mechanism. When mod-
elling the rewards, we apply a discounting parameter with

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright

c� 2014, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

respect to time. Namely, the earlier the work is done by
the robot, the more reward the robot can gain. To see how
accurate our probabilistic estimation can be, we conducted
several simulations where we saw that our method can ac-
curately estimate the reward that a robot would gain within
constant computational time.

2. APPROACH
We model the environment as three distinct, spatially sep-

arated stations: (1) work station, (2) pre-stand station and
(3) recharging station. All three stations are static. The
pre-stand station is a stepping stone of recharging station.
If the robot fails to dock, it will return to the pre-stand sta-
tion before trying docking again. Traveling from recharging
station to pre-stand station takes time ⌧3 while traveling
from pre-stand station to recharging station takes time ⌧2.
Transition between working station and pre-stand station
takes ⌧1 for a single trip. In the working station, we model
robot’s work consisting of sequence of discrete steps, where
⌧

w

stands for the duration for each step. For a piece of work
that consists k steps, the time for working will be k⌧

w

. At
the recharging station, we denote the recharging time as ⌧

r

.
We also define ė

r

as the charging rate in the recharging
station, ė

d

as the energy consuming rate when robot trav-
elling between any two stations, ė

w

as the energy consum-
ing rate when the robot is working. The robot gain re-
ward during its working. The reward can be computed asR

t0+�

t0
�

t dt, where t0 is the time when robot starts work-
ing, � is the total working time and � is a discounting
parameter and � 2 (0, 1). We define a Cycle as a period
between two successive successful docking in the recharging
station. The time length for a i’th cycle can be computed as
t

i

c

= ⌧

i

r

+ ⌧3 + ⌧1 + k

i

w

⌧

w

+ ⌧1 + ⌧2 + (ki

d

� 1)(⌧2 + ⌧3), where
k

i

w

2 R+ is the number of steps of working and k

i

d

2 N+

is the number of attempts to dock. We define a Trail as a
sequence of cycles such that the trail ends up if the robot
uses up all its energy before successfully docking. The total
time duration of a trail can be computed as t

j

t

=
P

M

i=1 t
i

c

.
Finally, we define Round as a sequence of trails of which the
time duration can be defined as tl

r

=
P

N

j=1 t
j

t

.
To model the uncertainty in docking, we define P

d

as the
probability of successful docking in each attempt. Hence
the probability that the robot successfully docks in the k’th
trial (fails in all previous trials) is P(k) = (1� P

d

)k�1P
d

. In
each cycle, we denote ⌧

w!r

as the time duration for robot
from leaving the working station to successfully docking on
the recharging station. The expectation of ⌧

w!r

can be
computed as E[⌧

w!r

] =
P1

k=1(1� P
d

)k�1P
d

(⌧1 + ⌧2 + (k �
1)(⌧3 + ⌧2)), where k is the number of docking attempts. In
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each cycle, the robot gains reward by working in the working
station. We denote the reward in the i’th cycle as R

i

=
R

T

i+⌧
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r
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i

w

⌧2

T
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�

t dt = 1
ln(�)�
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i

(�k

i

w

⌧
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where T

i

stands for the starting time of the i’th cycle and
k

i

w

stands for the total number of steps for working.
We use ✏

w!r

to represent the remaining energy at the
moment when the robot needs to leave the working station
for the regarding station. We define E

i

as the energy of the
robot at the moment when the robot successfully docks the
charging station in the i’th cycle. Assuming robot takes k

i

d

trials for a successful docking, the relationship between ✏

w!r

and E

i is: Ei = ✏

w!r

� ė

d

(⌧1 + ⌧2 +(ki

d

� 1)(⌧2 + ⌧3)). Note
that in order to make sure Ei � 0, there exists the maximum
number that the robot can try to dock before using up all
energy: I

max

= (✏
w!r

/ė

d

�⌧1�⌧2)/(⌧2+⌧3)+1. When k

i

d

�
I

max

, we simply set Ei = 0. Thus, the expectation of Ei can
be computed as E[Ei] =

P
I

max

j=1 (1�P
d

)j�1P
d

(✏
w!r

�ė

d

(⌧1+
⌧2 + (j � 1)(⌧2 + ⌧3))). We also define the energy that the
robot has after recharging as ✏

r!w

. The time for recharging
in i’th cycle is thus ⌧

i

r

= (✏
r!w

� E

i)/(ė
r

). The averaging
recharging time is then E[⌧ i

r

] = (✏
r!w

� E[Ei])/ė
r

. With
✏

w!r

and ✏

r!w

, we can compute the total time the robot
used for working: ki

w

⌧

w

= (✏
r!w
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� ė

d

(⌧3 + ⌧1))/ėw.
Given E

i, Ei+1 and T

i, we can compute T i+1, the starting

time of the (i+1)th cycle as follows: T i+1 = T
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, which is the

sum of the starting time of ith cycle, the time duration for
recharging, the time duration for traveling from recharging
station to working station, the time duration for working,
the time duration for traveling from the working station to
the recharging station and the total time duration used for
getting a successful docking. Thus, the expectation of T i+1�
T

i can be computed as E[T i+1 � T

i] = ✏

r!w

�E[Ei]
ė
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.
To model the average reward the robot can get in the i’th

cycle, we compute E[Ri] ⇡ 1
ln(�)�

E[⌧i

r

]+⌧3+⌧1+E[T i](�k

i

w

⌧

w �
1), where k
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w
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We model the expected reward in one trail as E[R1] =

E[R0](
P1

j=1 �
j(E[T i+1�T

i])) = E[R0] 1

1��

(E[Ti+1�T

i])
. Note

that in each cycle, there is non-zero probability that the
robot will use up all its remaining energy before success-
fully docking. For this situation, we simply assume the re-
ward at this cycle is zero. Thus, the expectation of the
total reward in each trail can be approximated as E[R1] =
E[R0] 1

1��

E[Ti+1�T

i]P
t

, where P
t

= P(ki

d

 I

max

). All the

approximations come from the fact that we approximate
E[f(x)] ⇡ f(E[x]) based Jensen inequality. We use E[R1]
to approximate the reward that a robot can gain during real
execution.

3. EXPERIMENTS AND CONCLUSION
We evaluated our probabilistic model in simulated envi-

ronments. To model the environment, we sample ⌧1, ⌧2, ⌧3
from Gaussian distributions. We vary the successful docking
probability P

d

from 0.1 to 1.0. We also vary the discount
parameter � from 0.9 to 0.99. Given a pair of ✏

w!r

and
✏

r!w

and the parameters (⌧1, ⌧2, ⌧3, P
d

and �) that are
used to model the simulated environment, we computed the
expected reward E[R1] based on the formulas in Sec. 2.
For comparison, we also compute the real average reward of

a trail by running 10,000 simulations and then computing
the average from the simulations .

Our experiments showed that the relative error between
the expected reward and the real average reward is within
5%. Hence, the expected reward E[R1] can serve as a fast
(constant computational time) and reasonable estimation of
the real average reward, which usually needs thousands of
simulations to estimate. In order to find the pair of ✏

r!w

and ✏

w!r

that results the high reward, we maximize the
expected reward E[R1] with respect to ✏

w!r

and ✏

r!w

using
optimization algorithms. In our implementation, we used
Gradient ascent. Hence, we can get a pair of ✏

r!w

and ✏

w!r

that can lead to high average reward in real execution. Note
that our method cannot promise global optimality for ✏

r!w

and ✏

w!r

since E[R1] may not be convex.
We have developed a probabilistic recharging model that

can a priori consider the uncertainty in the docking pro-
cedure. For any given pair of ✏

r!w

and ✏

w!r

, instead of
estimating the real average from thousands of simulations,
which takes a long time to compute, our method provides an
accurate estimation of the average reward within constant
computational time. In the future work, we will look for
real applications on physical robots. We also plan to extend
the current model to a adaptive model where (✏

r!w

, ✏
w!r

)
have to be learnt online (e.g., reinforcement learning). Fi-
nally, we will formulate the probabilistic recharging model
in a Partial Observable Markov Decision Process (POMDP)
framework, which could lead to globally optimal solutions.
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