
Low Cost Activity Recognition Using Depth Cameras and
Context Dependent Spatial Regions

(Extended Abstract)
Michael Karg

Institute for Advanced Study,
Technische Universität München

Lichtenbergstrasse 2a, D-85748 Garching
kargm@in.tum.de

Alexandra Kirsch
Department of Computer Science,

University of Tübingen
Sand 14, D-72076 Tübingen

alexandra.kirsch@uni-tuebingen.de

ABSTRACT
Recognition of human activities is usually based on expen-
sive sensor setups to extract rich information such as body
posture or object interaction. We investigate the use of
inexpensive depth cameras to perform activity recognition
using context dependent spatial regions with two different
approaches: Spatio-Temporal Plan Representations and Hi-
erarchical Hidden Markov Models. We evaluate both ap-
proaches in a simulated and a real-world environment.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents; I.2.8 [Problem Solving, Control Methods, and
Search]: Heuristic methods

General Terms
Experimentation, Human Factors, Algorithms

Keywords
Activity Recognition, Human Robot Interaction, Agents for
improving human cooperative activities

1. ACTIVITY RECOGNITION
Activity recognition is a key capability for autonomous

robots to interact with humans. Challenges include the high
variability of human behavior, the representation of human
activities consisting of several steps, but also the cost and
acceptance for the necessary sensors. The goal of our work
is to provide a household robot with information about on-
going human activities such as preparing a meal, so that
the robot can proactively offer its help, monitor for failures
or take care not to interfere with the human. Our activity
recognition is based only on locations, which can be detected
relatively reliably by state-of-the-art sensors, and the tempo-
ral order and duration in which they are visited. Additional
object detection is discussed below.

We assume having a semantic map of the environment,
specifically including furniture. From a dataset of 12 partic-
ipants performing different pick-and-place tasks we learned
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where humans are generally located when performing ac-
tions (such as grasping) relative to reference objects (such
as the table). The result is an extended spatial map of
Context Dependent Spatial Regions with semantically an-
notated regions, at which pick-and-place actions are usually
performed, relating each location with the furniture object
on which the manipulated object stands. Once the regions
are learned, they can be carried over to other environments
as long as a semantic annotation of the furniture is avail-
able. From a map of Context Dependent Spatial Regions
we generate two representations that serve as input to two
activity recognition strategies:

Spatio-Temporal Plan Representations (STPRs) from
our previous work [3], represent a human activity as a
sequence of spatial regions visited throughout the task,
together with the time spent at each location. Activity
recognition is done by matching two such sequences.
We use the Generalized Levenshtein Similarity (GLS)
on a string representation of the sequences of locations
as the similarity measures of an observed action (i.e.
location) sequence with a known one.

Hierarchical Hidden Markov Models (HHMMs) as used
by Bui et al. [2], are a hierarchical form of HMMs. On
the lowest level they represent the regions with their
transition probabilities, on the highest level are the hu-
man activities, also with transition probabilities. We
use the Forward-Backward Algorithm to estimate the
posterior marginals over all activities.

2. EVALUATION
For evaluation, we use data of the Human Morning Rou-

tine Dataset [4] with motion tracking data of a male person
executing his morning routine over 14 days in simulation
as well as in reality. We used the learned context depen-
dent spatial regions applied to our experimental kitchen. To
keep the effort limited, we manually generated STPRs and
the state transitions of the HHMMs of the activities using
sequences of context dependent spatial regions based on the
spatial model. However, there are also approaches to learn
such models from observations [3, 1].

For lack of other data, the following evaluations use the
same dataset used to manually create the STPR and HHMM
model. This is not ideal, but the variation in the data is large
enough to pose a challenge. Assuming that such models
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a) Simulated data
Activity Prec. (%) Recall (%) Acc. (%)
Drink water 66.3 62.5 86.8
Prepare cereals 95.1 96.6 94.4
Prepare curd cheese 63.8 46.5 62.8
Clean table cereals 87.9 64.7 94.0
Clean table curd cheese 45.2 44.7 89.5
Prepare work 44.6 68.0 92.6
b) Real world data
Activity Prec. (%) Recall (%) Acc. (%)
Drink water 35.9 37.0 76.4
Prepare cereals 51.9 67.5 62.9
Prepare curd cheese 34.8 25.0 63.0
Clean table cereals 68.4 23.2 82.3
Clean table curd cheese 85.8 34.1 84.9
Prepare work 63.4 91.3 92.6

Table 1: Average precision, recall and accuracy for
12 experiments of the simulated and real data using
only locations with HHMMs.

could be learned with large data sets, the difference between
learning and evaluation data would also be small.

Recognizing single activities.
In a first experiment, we examined how well single activi-

ties were recognized. Six activities were known, for example
prepare cereals, and we used data from simulated runs as
well as real-world data recorded with Kinect sensors.

Those runs show the disadvantage of STPRs representing
a single action sequence. Variations in task execution are
not represented, thus leading to high confusion rates. Still,
in many cases, the correct action is recognized (even though
it wins only closesly) or a similar action (for example, the
system recognizes prepare curd cheese instead of prepare ce-
reals). The results were worse than in previous work [3].
The reason is most likely the setup in the environments:
while in [3] all locations were separate, the locations in this
setup overlapped. This leads to additional uncertainty over
the semantic label of spatial regions, which the STPR model
cannot represent.

The HHMM model fares considerably better, recognizing
the correct action with higher certainty. The fact that HH-
MMs do not represent the durations of actions or repeated
occurrences of actions was no problem with our data set,
but could be problematic in other cases.

With both methods, the recognition rates are similarly
high with real data as with simulation data. This shows
that the strategy of only using locations is well suited to
real-world setups.

Recognizing several actions.
When several actions are performed, the additional chal-

lenge of recognizing action transitions occurs. To recognize
activities in a sequence, we only use the HHMM model, as it
was clearly better for single activity recognition and because
it is well suited to represent another layer of more abstract
activities. Again we used the data from our morning routine
data set. Table 1 shows the results of these experiments and
Figure 1 illustrates a specific recognition run.

The data show that our system can mostly recognize the
activities, but not as reliably as other systems. This is
not surprising, as our data is more parsimonious, but the
achieved recognition rates are not enough for a reliable recog-
nition that allows for appropriate robot behavior. However,

Figure 1: Probabilities of activity recognition for
the morning routine from one of the 14 days in the
real-world data set.

some of our activities are very similar, like the different food
preparation activities. For a robot it may be sufficient to
know that the user is preparing a meal, not necessarily which
one. Therefore, we performed another experiment using the
real data where we merged the food preparing activities and
the cleaning activities into one activity each. We repeated
the experiment and calculated precision, recall and accuracy,
which resulted in improved accuracy values between 73.8 %
and 94.4 % data.

We also investigated the possibility of increasing the accu-
racy by partly including object detections into the simulated
experiment. Out of the 25 object interactions of the user, on
average 15 were detected and the inclusion of those led to an
increased accuracy between 91.0 % and 96.4 % for the simu-
lated data. However, with real data, object detections were
very unreliable, leading to accuracy values between 57.5 %
and 91.0 % with an average of 76.41 %.

3. CONCLUSION
We presented an approach for activity recognition based

on context dependent spatial regions in a kitchen environ-
ment using inexpensive depth cameras. We found that STPRs
do not perform well in settings when regions are located
very close to each other. HHMMs overcome this drawback
and account for variations in task execution. By relying on
locations as easily observable data, the uncertainty of the
recognition lies more in the structure of the task than in the
sensor noise.
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