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ABSTRACT
We study the constructive variant of the control problem
for Condorcet voting, where control is done by deleting vot-
ers. We prove that this problem remains NP-hard for the
Condorcet-consistent voting rule Uncovered Alternatives. Fur-
thermore, we develop a relation-algebraic model of Con-
dorcet voting and relation-algebraic specifications of the dom-
inance relation and the solutions of the control problem.

1. INTRODUCTION
We study constructive control by deleting voters [2] in an

election. Here, the authority conducting the election (called
the chair) knows the preferences of all voters and wants to
ensure that a certain candidate a∗ wins the election. To do
this, she can remove voters from the election. This yields the
following computational problem: Given an election consist-
ing of a set of candidates, voters along with information on
how they will vote, and a preferred candidate a∗, determine
a smallest set Y of voters such that removing all voters in
Y makes a∗ win the election.

Following [1], numerous papers have studied the complex-
ity of algorithmic problems in the context of elections (see
e.g., [8]). For many voting rules, the control problem is
NP-complete; such voting rules are deemed to be “secure”
against this attempt to influence the outcome of the election.
However, efficient algorithms that work for many cases can
exist for NP-hard problems, the very successful history of
SAT solvers being an impressive example (see also [7] for an
example from Computational Social Choice).

We contribute to the investigation of the complexity of
the control problem. We study Condorcet-consistent rules,
i.e., rules which always elect a Condorcet winner if there is
one. A Condorcet winner is a candidate a that “beats” every
other candidate b in the sense that more voters prefer a to
b than vice versa. We focus on the Uncovered candidates
rule (cf. [6]). This rule states that each uncovered candi-
date wins the election in the absence of a Condorcet winner.
An candidate a is uncovered if there is no candidate b such
that b beats a in a pairwise contest, and every candidate c
which beats b also beats a. We show that the control prob-
lem is NP-complete for this voting rule (NP-completeness
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of the control problem for the Condorcet voting rule was
established in [2]).

To investigate whether hardness in fact precludes prac-
tical solutions to the control problem, we use the relation-
algebraic tool RelView [3] to solve the control problem for
both voting rules mentioned above. Since RelView rep-
resents relations as OBDDs (a special kind of branching
programs), the worst-case exponential running time can be
improved for practical instances. To the best of our knowl-
edge, this is the first paper that uses relation algebra for
Computational Social Choice by directly taking the voter’s
preferences into account. The only comparable previous re-
sults that we are aware of allow to determine the winner
of an election, provided that the dominance relation (es-
sentially the election’s tournament-representation that ab-
stracts away the individual votes) is precomputed (see, e.g.,
[4]). Our algorithms perform well also on non-toy instances.
The full version of this extended abstract can be found in [5].
It also studies the Condorecet voting rule which does not
elect any candidate if there is no Condorcet winner.

2. CONDORCET VOTING COMPLEXITY
An election consists of a set N = {1, . . . , n} of voters, a

non-empty, finite set C of candidates, the preferences of each
voter and a voting rule. The preferences of each voter i are
expressed via a linear strict order >i on C. An instance of
a Condorcet election consists of the sets N , C, and the re-
lations >i for all i ∈ N . Since a Condorcet winner does not
always exist, a number of so-called Condorcet-consistent vot-
ing rules (rules that elect a Condorcet winner if one exists)
have been studied. For one of these rules, namely Uncovered
Alternatives (cp. introduction), we show the following (the
proof can be found in the full version [5]):

Theorem 1. The constructive control problem by delet-
ing voters is NP-hard for Uncovered Alternatives.

3. RELATION-ALGEBRAIC MODELING
In the full paper [5] we present algorithms for the control

problem based on relation algebra and the tool RelView,
in this extended abstract we only give a brief introduction.
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Figure 1: Individual Preferences Relations
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Figure 2: Election instance modeled as relation

We use binary relations, i.e., sets R ⊆ X × Y for (finite)
sets X and Y , and consider such an R as a Boolean matrix.
Figure 1 shows relations in matrix notation that represent 4
votes with candidate set {a, . . . , h}. The voter with the left-
most preference relation >1 prefers a to all other candidates,
hence the relation contains the pairs (a, x) for all x 6= a:
there are black squares denoting that all pairs (a, x) with
x 6= a are elements of >1. The complete preference relations
specified in Figure 1 are as follows: The left-most voter ranks
the candidates a, c, e, g, b, d, f, h, the second one ranks them
a, b, c, d, e, f, g, h, the third one as b, a, d, c, f, e, h, g and the
preference of the right-most voter is h, g, f, e, a, b, c, d.

We combine the preferences of the voters into a single rela-
tion. As an example, assume that voters 1-3 vote according
to the left-most preference relation from Figure 1, voters
4-6, 7-9 and 10-13 vote according to the second, third and
fourth relation from Figure 1. The combined relation can
be seen in Figure 2. For each pair (x, y) of candidates, there
is a column which for each voter i ∈ {1, . . . , 13} contains a
positive entry (black square) if that voter prefers x to y, and
a negative entry (white square) otherwise. This leads to the
following definition:

Definition 3.1. The relation P ⊆ N × C2 models the
instance (N,C, (>i)i∈N ) of an election if (i, (x, y)) ∈ P if
and only if x >i y, for all i ∈ N and (x, y) ∈ C2.

Computations in the relation-algebraic model use the ba-
sic “building blocks” of relation algebra, namely the basic
relations and the operators that we will use in our compu-
tations. The basic relations are the identity relation I, the
universal relation L and the empty relation O. More com-
plex relations are constructed using set-theoretic operations
as complement R , unions R ∪ S and intersections R ∩ S
and relation-algebraic operations as composition R;S and
transposition RT. To give an impression what our results
look like, the following theorem shows how to compute the
dominance relation D ⊆ C×C of a Condorcet election. Con-
cerning the specific relations π, ρ, M aund S and the specific
relation-algebraic constructions syq(·, ·), [·, ·]] and rel(·) used
in the theorem, we have again refer to the full paper [5].

Theorem 2. Suppose that P models an instance of a Con-
dorcet election. If we define relations E := syq(P,M), F :=

syq(P ; [ρ, π]],M) and D := rel((E∩F ; (S∩ ST )); L), then for
all x, y ∈ C we get (x, y) ∈ D iff

|{i ∈ N | (i, (x, y)) ∈ P}| > |{i ∈ N | (i, (y, x)) ∈ P}|.

Relation-algebraic specifications using the above-mentioned
basic building blocks are very formal, and can be specified
directly in RelView’s input language. Hence we obtain our
algorithms as relation-algebraic specifications which directly
gives us executable code.

4. CONCLUSION
We proved a new complexity result concerning Condorcet

voting, viz. that the constructive control problem by deleting
voters remains NP-hard if the classical winning condition“to
be a Condorcet winner” is replaced by “to be in the uncov-
ered set.” We also demonstrated how to use relation algebra
for modeling and problem-solving in the area of voting rules.
In experiments, our algorithms could deal with instances of
“realistic” size. Our algorithms are formalized in such a way
that, in principle, their automatic verification is possible.

Our results show that Computer Algebra tools can be used
to obtain practical algorithms for hard problems without
relying on domain knowledge for optimizations, if the data
structures used in the Computer Algebra package – like the
OBDDs used in RelView – automatically exploit the ‘easy-
ness’ that may be present in practical instances. This sup-
ports the point of view that proving NP-hardness is not suf-
ficient in order to conclude that a voting rule is“secure” from
attempts to influence the outcome of an election. RelView
also generates visualizations and has further features that
support scientific experiments, like step-wise execution, test
of properties and generation of random relations. All this
makes the approach especially appropriate for prototyping
and experimentation, and as such very instructive scientific
research as well as for university education.

5. REFERENCES
[1] J. Bartholdi, III and J. Orlin. Single transferable vote

resists strategic voting. Social Choice and Welfare,
8(4):341–354, 1991.

[2] J. Bartholdi, III, C. Tovey, and M. Trick. How hard is
it to control an election? Mathematical and Computer
Modeling, 16(8/9):27–40, 1992.

[3] R. Berghammer and F. Neumann. Relview - an
obdd-based computer algebra system for relations. In
CASC, volume 3718 of Lecture Notes in Computer
Science, pages 40–51. Springer, 2005.

[4] R. Berghammer, A. Rusinowska, and H. C. M.
de Swart. Computing tournament solutions using
relation algebra and relview. European Journal of
Operational Research, 226(3):636–645, 2013.

[5] R. Berghammer and H. Schnoor. Relation-algebraic and
tool-supported control of condorcet voting. CoRR,
abs/1304.7244, 2013.

[6] F. Brandt and F. A. Fischer. Computing the minimal
covering set. Mathematical Social Sciences,
56(2):254–268, 2008.

[7] V. Conitzer and T. Sandholm. Nonexistence of voting
rules that are usually hard to manipulate. In AAAI,
pages 627–634. AAAI Press, 2006.

[8] V. Conitzer, T. Sandholm, and J. Lang. When are
elections with few candidates hard to manipulate? J.
ACM, 54(3):14, 2007.

1366



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140217172927
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         7
         AllDoc
         36
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140217172927
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         7
         AllDoc
         36
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     2
     1
     2
      

   1
  

 HistoryList_V1
 qi2base





