
A Rollback Conflict Solver for Integrating Agent-based
Simulations

(Extended Abstract)
Dhirendra Singh

RMIT University, Melbourne, Australia
dhirendra.singh@rmit.edu.au

Lin Padgham
RMIT University, Melbourne, Australia

lin.padgham@rmit.edu.au

ABSTRACT
We present a framework we have developed, OpenSim, for
integrating disparate simulation components, particularly
agent-based models (ABMs) that are increasingly being used
for modelling complex social systems, into a single simula-
tion. In this paper we focus on the integration of existing
ABMs that have been independently developed and vali-
dated. The key challenge is to make as few modifications as
possible, while still faithfully producing what would be ob-
tained if the models and their interactions had been rebuilt
as a single system from scratch. Our proposed mechanism
for doing this, improves substantially on previous options.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of simulation—
Combined, Distributed

Keywords
Simulation Integration, Agent-based, Conflict Resolution

1. INTRODUCTION
Agent based simulations are popular for modelling com-

plex social systems involving human behaviour which can-
not readily be abstracted into mathematical formulae. We
propose a mechanism for component based integration of ex-
isting simulations, which can be difficult due to the complex
ways in which components interact. Examples of the kinds
of integrations we are interested in include coupling MAT-
Sim (a traffic flow simulator) with UrbanSim (a simulation
system for urban planning and development) in [4], and the
Phoenix fire simulator with MATSim in [6].

While some frameworks to support integration do exist,
such as the High Level Architecture (HLA) used in defence
simulations [2] and the Open Modeling Interface (OpenMI) 1

used in the domain of water management, these do not pro-
vide adequate support for managing conflicts that can arise
when combining existing ABMs that, inevitably, individu-
ally represent and update aspects of the environment that
are now essentially “shared” in the contect of a global sim-
ulation. In contrast to our previous approach of [5], rather

1http://www.openmi.org

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

OpenSim simulation with
global hospital-beds, ambulance,. . .

Integration
Manager

Time
Manager

Conflict
Resolver

OpenSim Wrapper

VS with local
hospital-beds,
ambulance,. . .

OpenSim Wrapper

DS with local
hospital-beds,
ambulance,. . .

init
step
finish

get/set
seed
rollback/step

Figure 1: Architecture of an OpenSim simulation, here
showing the example integration of DS and VS.

than have a conflict resolver manage interactions ex ante on
a continuous basis within a single timestep to avoid such up-
date conflicts, we now detect conflicts ex post at the end of
a timestep, and the conflict resolver then directs some con-
flicting components to re-run their current time step under
changed conditions. This approach has the advantage of re-
quiring less change to component code than previously in [5],
while at the same time addressing some identified problems
inherent in that mechanism.

2. OPENSIM FRAMEWORK
Our framework, OpenSim, provides an interface that allows

concepts within individual components to be linked together
(via shared variables), as well as infrastructure for merging
the values of these shared variables at each timestep (via an
Integration Manager (IM)), resolving conflicts (via a Con-
flict Resolver (CR)) from incompatible updates to shared
variables, and progressing the simulation time (via a Time
Manager (TM)). The process of integration using OpenSim ba-
sically involves writing component wrappers that implement
the interface functions of Table 1. The progression of logical
time is managed similarly to [1, 5] via the TM. Each simu-
lation component sends a request to the TM that then pro-
gresses the simulation to the earliest logical time requested.

Figure 1 shows the architecture of a global simulation
composed of an existing disaster management simulation
(DS) and virus simulation (VS), to explore the impact of two
simultaneous stressors - a natural disaster and a disease epi-
demic - on a shared hospital system. Here hospital-beds

1399



Function Description
init() Initialises the model. Called once at the start of the simulation prior to any other call to the model.
step() Progresses the model simulation by one simulation step. Different models may run at different time gran-

ularities. The TM controls the progression of logical time and this function is called on only the models
scheduled to run in the current logical time.

rollback() Reinstates the model to the precise state that existed prior to the last step call. As a result, a series of
repeated executions step → rollback should result in identical start and end states. Model wrappers
should implement this by saving the full state of the model at the start of every step, and restoring it when
this function is called.

setSeed(n) Set the seed to n for all pseudo-random number generators used by the model. As a result, the execution
setSeed(n) → step → rollback → setSeed(n) → step should result in identical start and end states.
Used by the OpenSim controller during conflict resolution to ensure that an execution sequence will converge
to an acceptable resource allocation solution.

getValue(v)
setValue(v,val)

Gets/sets the value of the simulation variable v. Models may differ in how the shared concept v is repre-
sented internally, and the IM uses convertors for translating values from one representation to another.

getInUse(v)
setInUse(v,val)

Gets/sets the “in use” attribute of the shared variable v. The getter function returns true if the model is
currently using v, for instance during a multi-step action. The setter is used by the IM to inform components
when v is in use by some other component, and also when it is available for use again.

finish Called once at the end of the simulation to allow models to perform any final tasks then terminate gracefully.

Table 1: OpenSim component model wrapper interface functions

and ambulance are shared variables common to both the DS
and VS, and are linked together via the OpenSim wrappers.
It is important for us, like in [5], that both modules have the
ability to modify the shared variables (hospital-beds and
public-funds) in any given timestep. As explained in detail
in [5], the approach of HLA, which requires ownership by a
single component for a whole timestep is unsatisfactory.

The simulation progresses from one logical time to the
next, controlled by the TM via step interface calls to the com-
ponents. At the end of a step, the IM compares the pre and
post values of the shared variables, via get calls, and checks
for update conflicts, such as if the DS and VS both updated
the hospital-bedsin a way that when their changes were
combined the number of remaining hospital-bedswas less
than zero. If there are no conflicts, it synchronises the com-
ponents with the final values of the shared variables, via set
interface calls, and informs the TM that the simulation can
now be progressed to the next logical time. If on the other
hand, there are conflicts, it works with the CR to resolve
them first. A resolution basically involves the IM resetting
the conflicted components to their initial state at the begin-
ning of the time step, via rollback interface calls, adjusting
the perceived values of the shared variables, via set calls,
in such a way that the original conflicts cannot occur, and
re-stepping the components once more. If the re-step causes
new conflicts, then the IM consults the CR again to find a
resolution (that doesn’t undo the previous resolution), then
resolves the conflicts in a similar way by rolling back, ad-
justing the shared variables, and re-stepping yet again. It
does this repeatedly until all conflicts are resolved.

Conflicts over shared variables are treated differently based
on whether the resource can only be updated by one compo-
nent at a time (serially accessible), or whether simultaneuos
writes are allowed (concurrently accessible). This is essen-
tially what [3] refers to as exclusive vs cumulative use. Serial
access to resources is achieved in OpenSim via the getInUse
and setInUse component interface functions. Implementing
serial access however does require some changes to the in-
ternal logic of the components as they must now explicitly
check the status of variables and decide what do if they are
unavailable. Serially accessible variables do not get update
conflicts. In HLA, all shared resources are accessed serially.

Conflicts in concurrently accessible resources arise from

over-use. The CR resolves conflicts using one of four user-
configured resolution policies: Equal allocation resolves the
over-use by allocating the resource equally amongst all using
components; Proportional allocation allocates in the same
proportion as initial conflicted use; Priority allocation re-
solves by allocating the resource in priority order, to the
full amount of conflicted use, until depleted; Custom: uses
a custom user-provided function.

When conceptually the “same” individual agent is repre-
sented in each component, the state of the agent can ba-
sically be captured as a combination of serially and con-
currently accessible shared variables. Additionally, we must
consider what actions they are doing in each component,
and whether or not these are compatible. For example it
should not be possible for a doctor agent to simultaneously
be treating a virus patient at the hospital in the VS, and go-
ing with the ambulance to the disaster scene in the DS. We
are yet to extend OpenSim for specifying, recognising and
resolving these types of conflicts.

3. REFERENCES
[1] R. M. Fujimoto. Time management in the high level

architecture. Simulation, 71(6):388–400, 1998.
[2] IEEE 1516 (Standard for Modelling and Simulation

High Level Architecture Framework and Rules) , 2000.
[3] R. Minson and G. Theodoropoulos. Distributing

RePast agent-based simulations with HLA.
Concurrency and Computation: Practice and
Experience, 20(10):1225 – 1256, 2008.

[4] T. W. Nicolai, K. N. L. Wang, and P. Waddell.
Coupling an urban simulation model with a travel
model - a first sensitivity test. In Computers in Urban
Planning and Urban Mgmt, number 11-07, 2011.

[5] D. Scerri, A. Drogoul, S. L. Hickmott, and L. Padgham.
An architecture for modular distributed simulation
with agent-based models. In Proc. of Autonomous
Agents and Multi-Agent Systems, pages 541–548, 2010.

[6] D. Scerri, S. Hickmott, K. Bosomworth, and
L. Padgham. Using modular simulation and agent
based modelling to explore emergency management
scenarios. Australian Journal of Emergency
Management (AJEM), 27:44–48, July 2012.

1400




