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ABSTRACT
This paper presents a framework for multiagent systems
trust modeling that reasons about both user credibility and
user similarity. Through simulation, we are able to show
that our approach works well in social networking environ-
ments by presenting messages to users with high predicted
benefit.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems
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1. BACKGROUND
In this paper, we choose as our primary competitor the

trust model of Champaign et al. [1] called LOAR (Learn-
ing Object Annotation Recommendation). It is inspired by
Zhang’s personalized approach to trust modeling [2] which
integrates both private and public reputation of peers but is
designed to operate well in social networking environments
in order to judge the trustworthiness of annotations left on
web objects by incorporating additional elements, namely:
(i) a modeling of peer similarity based on past rating be-
haviour (where peers view messages and then downvote or
upvote) (ii) a modeling of an annotation’s reputation (based
on one of three combination functions to compute the rep-
utation of the annotator (based on past reaction to his an-
notations, where votes are scaled up or down based on peer
similarity).

2. MODEL
Our central algorithm for message recommendation is dis-

played in Algorithm 1. Determining whether an annotation
or message will be well-received (i.e., is beneficial) is not
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deterministic; it can instead be modelled as a Bernoulli pro-
cess. That is, if M is the event that a message is well-
received, then we seek to determine ψ = Pr(M). More-
over, we allow this parameter to itself be represented as
a random variable and rely on Bayes’ theorem to update
prior probability distributions over ψ. In particular, we can
use the beta distribution1 to represent the prior Pr(ψ), so
that ψ ∼ Beta(α∗, β∗). However, since we model the trust-
worthiness of messages (not annotators), the user does not
have any prior belief that directly corresponds to the mes-
sage itself (has yet to experience it, so the only rational
belief is to assume that α∗ = β∗ = 1, i.e., that ψ is uni-
formly distributed in the interval [0, 1]). When a user solicits
feedback about a message, his peers report binary ratings.
Equivalently, peers report parameters αp and βp such that
αp + βp = 1. In this work, we restrict this report such that
αp, βp ∈ {0, 1}. To combine peer reports, we model the sim-
ilarity between users i and j using Hamming distance. The
Hamming distance is a measure of the number of bits by
which two binary strings differ, or equivalently, how many
changes need to be made to string a to transform it into
string b. Here, we can consider the series of common an-
notation ratings between two users to form “binary rating
strings”.

We normalize the Hamming distance between i and j
to arrive at a similarity metric called the Hamming ratio,
denoted hij (the Hamming distance divided by the length
of the binary strings, i.e., the number of common ratings).
Since a Hamming distance of 0 means that the two strings
are identical, a Hamming ratio of 0 suggests we simply take
a peer report as given; in contrast, if the Hamming ratio is
1, we swap the values reported for αp and βp. This captures
the fact that non-similar peers can still deliver useful infor-
mation; perfect negative correlations are just as informative
as positive ones. We formalize this combination as follows:

α∗ = 1 +
∑
p∈P

(1− hsp) · αp + hsp · βp (1)

β∗ = 1 +
∑
p∈P

(1− hsp) · βp + hsp · αp (2)

A report r ∈ [0, 1] can be translated into parameters (α, β) =
(r, 1 − r) so that a report of r = 1 corresponds to α =

1In particular, α∗ (β∗) represents the strength of a user’s
belief that a message will be good (bad). Thus, when α∗ is
high and β∗ is low (β∗ is high and α∗ is low), the user will
be very confident that he should see (not see) the message.
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1, β = 0, a report of r = 0.5 corresponds to α = β = 0.5,
and r = 0 to α = 0, β = 1. To make this more explicit,
suppose that user i solicits advice from user j about a mes-
sage m. Suppose further that the Hamming ratio between
i and j is 1 (that is, they are completely opposite). Then,
if j reports (α, β) = (0, 1) (i.e., he thinks the message not
useful, or perhaps even incorrect), the similarity weighting
scheme described above will reverse this opinion to (α, β) =
(1, 0) when determining the trust metric from i’s perspec-
tive. That is, the message, which j thinks should not be
shown, will now be more likely to be shown. However, in
this case, if j is perfectly credible, his opinion of a message
corresponds to a very credible one. Accordingly, his report
might be better taken verbatim rather than dampened by
the Hamming ratio. This algorithm encodes a heuristic

Algorithm 1: Deriving a predicted benefit using simi-
larity and credibility (CredTrust)

Input: The current user, u, his set of peers, P , their
credibility scores, cp ∈ [0, 1], and their
corresponding ratings for the annotation in
focus, rp ∈ {0, 1}

Output: Parameters α∗ and β∗ to a beta distribution
describing trust in the current annotation

1 α∗ = β∗ = 1 // At the start, user has a uniform
expectation about the message

2 foreach p ∈ P do
3 hup ←− computeHammingRatio(u, p)

// Perform a Bayesian update after
discounting heuristic

4 if rp == 0 then
// Adjust the similarity weight by

credibility:
5 α∗+ = hup(1− cp)
6 β∗+ = 1− hup · (1− cp)
7 else

// Dampen update by credibility
8 α∗+ = cp · (1− hup)
9 β∗+ = cp · hup

10 end
11 end

when amalgamating peer advice. We typically heed peer ad-
vice to the extent that the advisors have similar preferences
to our own. However, CredTrust reverses the role that simi-
larity plays in overturning our interpretation of peer advice,
so that non-similar but credible peer advice will be heeded,
verbatim. Thus, credible peers can stop folklore: propaga-
tion of false messages by similar (non-credible) peers.

3. VALIDATION
We simulate an environment consisting of 20 agents, each

of whom create messages and rate messages created by other
the agents. Agents are partitioned into one of two sets: low
credibility or high credibility. When authoring messages,
credibility scores influence the “underlying message credibil-
ity” of the messages the agents create. For example, when
an agent has a credibility of 0.5, approximately half of the
messages it authors will be simulated to be beneficial and
approximately half of the messages will have a “flaw” that
detracts from agents’ utilities if read.

In addition to credibility, agents are randomly assigned a
type θa ∈ [0, 1]. The agent’s type is a parameter that in-

Figure 1: MCC versus percentage of non-credible
advisors.

fluences similarity; agents of the same type tend to like the
same messages. Moreover, messages have a type θm ∈ [0, 1]
in order to appeal to different agents. In particular, we sim-
ulate agents rating messages more highly when those mes-
sages correspond to their type. However, agents’ evaluation
of the credibility of each message is modeled by flipping bi-
ased coins with probabilities proportional to their own cred-
ibilities; if an agent considers a message to be credible, and
that message closely matches the agent’s type, it will rate
the message highly. The result is that less credible agents
tend to rate messages they like highly, irregardless of any
misinformation or flaws contained within the message.

Each agent randomly produces between 1 and 10 messages
and rates all of the messages produced by other agents. In
order to evaluate the quality of the inferred benefits for mes-
sages, we randomly partition messages into a training and
validation set. The training set is composed of approxi-
mately 70% of the messages and is used for the purpose of
determining the Hamming distances (for CredTrust) and the
similarities and author reputations (for LOAR).

Once all of the algorithm inputs have been computed, the
simulation runs each algorithm on the testing set to find the
predicted benefits for each message based on the advisory
ratings. If the predicted benefit of a message is determined
to be high (i.e., greater than 0.5), the message is recom-
mended; otherwise, it is rejected. We compute the number
of correctly classified messages (i.e., correctly recommended
or correctly rejected) by comparing to the “correct” message
classifications (based on the known benefits of each message
to each agent) and report the Matthew’s Correlation Coeffi-
cient (MCC), which relates the true positive, false positive,
false negative, and true negative rates. Results show that
CredTrust performs well and outperforms LOAR.
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