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ABSTRACT
In this paper, we investigate a noncooperative sequential bargaining
game for allowing a group of agents agents to partition themselves
into non-overlapping coalitions. We focus on the issue of how a
player’s position on the bargaining agenda affects his power. We
also analyse the relationship between the distribution of the power
of individual players, the level of democracy, and the welfare effi-
ciency of the game.
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1. INTRODUCTION
In this paper, we focus on the problem of how a group of agents
can partition themselves into a coalition structure through a pro-
cess of noncooperative bargaining. We assume externalities and
non-transferable utilities. We introduce coalition structure games
(CSGs) that encompass many important classes of coalitional games
including hedonic games and NTU (non-transferable utility) games
in partition function form. Using a CSG as the underlying game,
we investigate a noncooperative bargaining protocol.

The protocol (built on [3, 4, 2]) runs in a series of rounds; the
agents take turns to propose an offer, i.e., a coalition structure. An
agreement must be reached by a deadline. For this protocol, we
provide a quantitative analysis of power and efficiency. We show
how a players position on the bargaining agenda influences his bar-
gaining power, and how the distribution of the players’ powers in-
fluences system efficiency. Our work is an extension of [1].

2. THE MODEL
We begin by defining CSGs and the bargaining game. A coali-
tion structure game is a tuple G = 〈N ,�1, . . . ,�n〉 where N =
{1, . . . ,n} is the set of players and �i ⊆ Π(N ) × Π(N ) is a
preference relation for each player i ∈ N . Player i’s preference for
a coalition structure is given by a rank ρi .
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For a coalition structure game G, we explore the following non-
cooperative bargaining game (BG) for forming a coalition struc-
ture. This is a finite-horizon game in which the players take turns
in proposing offers where an offer is a coalition structure. The se-
quence in which the players are called to make offers is called the
bargaining agenda. The bargaining agenda ρ is a permutation of
the first n integers. The game can run for at most n time periods.
Bargaining starts in the first time period. To begin, all the players
in N are in the set IN . The set OUT is initially empty. At t = 1,
mover 1 offers a coalition structure π ∈ Π(IN ). After an offer is
proposed, the game will end with probability δ. With probability
(1−δ) it will continue to the next round when mover 2 will propose
an offer and so on. When a player’s offer is rejected, he is moved
from IN to OUT.

A BG is a 4-tuple G = 〈N ,�1, . . . ,�n , δ, ρ〉, but, for nota-
tional convenience, we will denote it G(n, δ, ρ), G(n, ρ), G(n),
G(ρ), or just G when the other parameters are clear from context.
P is the set of all possible preferences combinations for the n play-
ers. All other parameters remaining the same, we can obtain differ-
ent BGs by varying �1, . . . ,�n . There are |P | = ((Bell(n))!)n

possible bargaining games. G is the set of these |P | games.

3. EQUILIBRIUM ANALYSIS
For a BG G = 〈N ,�1, . . . ,�n , δ, ρ〉, we provide subgame perfect
equilibrium strategies and analyse i) how a player’s power is related
to his position on the agenda and ii) how the distribution of power
affects the efficiency of the equilibrium. To this end, we measure
a player’s power by considering his ability to secure a preferable
equilibrium structure:

DEFINITION 1. Player ρi ’s (i ∈ N ) power index over the set
of games in G is defined as:

Pρi (G) = 1−
(
(E(ρi)− 1)/(Bell(n)− 1)

)
;

where E(ρi) denotes ρi ’s average expected rank in the equilibrium
for the games in G and defined as follows:

E(ρi) =
1

(Bell(n)!)n

∑
G∈G

erρi (π
∗
1(G)).

DEFINITION 2. A welfare maximizing coalition structure is one
that minimizes the sum of ranks of the players and is denoted πSW .

A coalition structure bargained using G may not the be the same as
the socially optimal structure πSW . In order to measure how far a
bargained structure is from πSW , we define efficiency ratio.
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Figure 1: The power in games of different size (δ = 0).

DEFINITION 3. For a give n and δ, the efficiency ratio, E(G)
for a game G is the ratio of the sum of the players’ ranks for the
globally optimal coalition structure for G and the sum of ranks for
the bargained structure, i.e., we have:

E(G) =

( n∑
i=1

ri(πSW )

)
/

( n∑
i=1

eri(π
∗
1(G))

)
Since the sum of ranks for a bargained structure can never be lower
than that for the globally optimal structure, we have E(G) ≤ 1 for
any n and δ. Below, we analyse the power and efficiency of our
game starting with the description of the simulation setup.

3.1 Simulation Results
The model was implemented and the power and efficiency were

measured for a range of games with different n . The results are
shown in Figures 1 and 2 for democratic games (i.e., δ = 0).

Power: We can distinguish two types of power: the power to pro-
pose and the power to reject. From the definition of the BG, ob-
serve that, for n ≥ 2, mover 1 has only the power to propose,
while mover n has only the power to reject. The following holds:

PROPOSITION 1. For n = 2, ρ1’s power to propose is equal to
ρ2’s power to reject.

Sketch of proof: Consider the number of preference orderings in
which both movers can exercise their power. We have only two
coalition structures π1 = {{1, 2}} and π2 = {{1}, {2}} and four
possible preference orderings: (1; 2)1 = (π1 � π2;π1 � π2),
(1; 2)2 = (π2 � π1;π2 � π1), (1; 2)3 = (π1 � π2;π2 � π1),
and (1; 2)4 = (π2 � π1;π1 � π2). We have G = {G(N , (1; 2)1),
G(N , (1; 2)2),G(N , (1; 2)3),G(N , (1; 2)4)}. There is no con-
flict for the first two games and for each of these two games, the
outcome is a structure that is most preferred by both ρ1 and ρ2.
For G(N , (1; 2)3), ρ2 has the power to reject ρ1’s offer in order
to bring about his most preferred structure {{1}, {2}}. Thus, the
outcome of this game will be {{1}, {2}} which is ranked 1 by ρ2
and 2 by ρ1. Here, ρ1 is powerless. The opposite happens for
G(N , (1; 2)4). Now, ρ1 will offer his most preferred structure
{{1}, {2}} and ρ2 cannot gain anything by rejecting ρ1’s offer.
Thus, ρ2 has the power to propose. The outcome of this game will
be {{1, 2}} which is ranked 1 by ρ1 and 2 by ρ2. We therefore
have E(ρ1) = E(ρ2) = 5/4 and Pρ1(G) = Pρ2(G) = 3/4.

PROPOSITION 2. For n ≥ 2, the last two players ρn−1 and ρn
have equal power, i.e., Pρn−1(G) = Pρn (G).

Figure 2: Average efficiency ratios for games with δ = 0.

Figure 3: Power and efficiency in G for n = 3.

The fact that the ρn−1 and ρn have equal power is convenient
when computing power in bigger games. Figure 1 presents the re-
sults for n = 2, 3, . . . , 9, from which we observe the following:

(a) For all n ≥ 2, the power of movers n and n − 1 is identical
(Proposition 2).

(b) For all n ≥ 3, the power of movers 1 . . . ,n − 2 increases
monotonically, i.e., ∀3≤i≤n−2Pρi (G) < Pρi+1(G).

(c) For all n ≥ 2, the power of the first mover decreases with n ,
i.e., ∀n≥2Pρ1(G(n)) < Pρ1(G(n + 1)).

Efficiency: Figure 2 shows the average efficiency ratios for games
of n = 2, . . . , 9 players. We observe that the efficiency ratio is
decreasing with growing n . The reasons can be sought in the distri-
bution of power in the game. As visible in Figure 1, with growing
n , the discrepancies between the power of agents increase. This
means that more and more often powerful agents are able to secure
favourable outcomes at the expense of powerless agents—a con-
flict which results in the overall efficiency loss. Figure 3 shows that
power and efficiency for three player games.
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