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ABSTRACT
In this paper we present an approach for multiagent
resource allocation that supports preemption in a fully
distributed, cooperative setting (i.e. allowing for re-
sources to be reassigned to agents, as the need arises,
even as tasks are currently underway), in a way that
copes with dynamic task arrivals.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords
Agent Cooperation-Teamwork, Coalitions and Coordination; Agent
Cooperation-Distributed problem solving; Humans and Agents-Agents
for Improving Human Cooperative Activities

1. INTRODUCTION
In this work, we offer a new approach to multiagent resource

allocation for a fully decentralized system. Our solution offers a
novel combination of planning techniques for coordinating the al-
location of resources with learning methods that allow agents to
make effective local decisions. By utilizing these techniques, we
are able to solve large scale problems even if faced with dynamic
arrivals of new agents to the environment.

Similarly to Paulussen et al. [1] we allow our agents to accept
personally disadvantageous trades, provided that the global utility
will increase. Accurately determining whether such a trade is possi-
ble requires estimating the opportunity cost of having a preempted
agent hold its resource (i.e. determining the agent’s behaviour fol-
lowing a preemption and what the utility derived thereon will be).
Whereas Paulussen et al. assume that cyclical preemptions result
in the last agent in the cycle being left with no resource at all (and
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thus underestimate the ability to acquire new resources), we instead
estimate the value of the actions that the dispossessed agent could
take, without resorting to pessimistic evaluation.

2. SYSTEM AND ALGORITHM
There are four central components of our proposed system. Tasks

represent a need for some user which must be satisfied by acquir-
ing a resource (where the length of required time remaining in or-
der to be satisfied is known). Task agents support tasks by map-
ping out plans (sequences of actions to attempt to acquire resources
based on beliefs about expected value and probability of obtain-
ing the resource) and sharing euplan (expected utility of executing
the plan), thus enabling coordination. Resources are modeled as
humans with an ability to be overwhelmed with requests. Proxy
Agents support resources by filtering requests, promoting those
where there is expected gain in utility.

The overall algorithm driving the system is one where agents
negotiate for resources, making requests based on their modeling
of the environment and holding contingency plans.

A task agent’s plan consists of a list of actions to be taken in
order, timestep by timestep. Each action is an attempt to acquire a
particular resource, by asking the proxy agent associated with that
resource for permission to use the resource. A task agent builds a
plan by maximizing the valuation function in equation 1.

V (X) = EU(Xi)× P (Xi) + (1− P (Xi))× V (X \Xi) (1)

where X is the set of all possible actions the agent could take,
EU(Xi) is the expected gain in utility if the action Xi succeeds,
and P (Xi) is the probability of the action Xi succeeding. Both
EU and P can be computed from domain-specific functions.

At each timestep, a task agent performs the action presently pre-
scribed by its plan. It does this by contacting the proxy agent as-
sociated with the targeted resource, and asking the proxy whether
it may take the resource. At the end of the timestep, the proxy
agent computes the expected utility of allowing each request it has
received, based on both its up-to-date local information about the
resource and information provided by task agents about the state of
each task making a request. The proxy filters requests, identifying
the request that will produce the highest positive expected change
in utility among all requests received and only allowing this best re-
quest to reach the resource. This minimizes the number of requests
that the (human) resource needs to deal with, and ensures that any
requests that do get through are as beneficial as possible in terms of
improving social welfare. If the resource is currently in use by an-
other task, the proxy agent computes the expected change in social
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welfare (loss and gain) resulting from allowing each request to pre-
empt the resource (rather than picking the task that gains the most).
This can be computed using local information provided by the task
that currently occupies the resource, including the expected utility
of its contingency plan, computed with V (X).

Agent learning is used to address the error in V (X) resulting
from task agents using their local (and potentially stale) informa-
tion to compute V (X). Task agents dynamically learn two proper-
ties of their environment (congestion and churn) which provide an
approximate correction for this error. Congestion is the extent to
which other task agents in the environment are seeking resources
similar to those sought by this agent. It is estimated from the fre-
quency with which the task agent’s resources are preempted, and
more frequent preemptions cause the task agent to reduce the per-
ceived value of its contingency plans when in possession of a re-
source, thereby making preemption of its resource more difficult.
Churn is the extent to which the task agent’s environment is chang-
ing. It is estimated by having proxy agents report the newly com-
puted expected utility of each request they receive back to the task
agent that made the request. If the value computed by the proxy
agent differs from that computed by the task agent, then the task
agent’s plan was based on information which has become stale.
When this happens often, task agents will respond by generating
plans with shorter horizons, so that they are also acting on recent
information.

Our system is able to handle dynamic task arrivals because of
its distributed nature. A new arrival to the system can generate an
initial plan by finding a list of resources and then begin attempting
to obtain resources immediately, on an equal footing with other task
agents that are already in the system. In contrast, solutions like that
of Paulussen et al. have residual benefits from remaining in the
system for a long time, which disadvantage new entrants and may
require a reset of the allocation system to accommodate them.

3. EVALUATION AND CONCLUSION
We ran a simulation that emulates the approach of Paulussen et

al. [1] in order to evaluate the relative differences between our
model and theirs. We projected our simulation into the domain of
mass casualty incidents where patients are tasks and doctors are re-
sources. We set the maximum plan length to 4, sampled dynamic
arrival times of tasks from a uniform distribution over the first 50
timesteps. Note that we modeled the expected value of backup
plans for the Paulussen model as the change in expected utility for
the displaced agent switching to its next-best resource, minus the
cost of displacing any agent who owns the backup resource, com-
puted recursively (where the last agent in a cycle reports expected
utility of losing without replacement). Our results are displayed in
Figure 1, which shows the improvement of treatment times when
using our algorithm. The benefits of using our system are most
pronounced when it is possible to treat patients quickly, but high
load makes it difficult to find a solution if the system does not pri-
oritize properly (e.g. the 5 resources line in the middle graph). In
all, we produce effective preemptive multiagent resource alloca-
tion with noticeable improvements over more pessimistic competi-
tors through our integration of planning and learning, together with
effective use of proxy agents for coordination and declaration of
expected utility of backup plans for assessing global utility.
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Figure 1: Mean improvements in treatment time over
Paulussen. Points above 0 show the advantage of using the new
algorithm.
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