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ABSTRACT
Taxi service is an important mode of modern public trans-
portation. However, operated by a large number of self-
controlled and profit-driven taxi drivers, taxi systems are
quite in efficient and difficult to analyze and regulate. While
there has been some work on designing algorithms for im-
proving taxi system efficiency, the state of the art algorith-
m, unfortunately, cannot scale up efficiently. To address
the inadequacy, we propose a novel algorithm—FLORA—in
this paper. Using convex polytope representation conversion
techniques, FLORA provides a fully compact representation
of taxi drivers’ strategy space, and avoids enumerating any
type of schedules. Experimental results show orders of mag-
nitude improvement of FLORA in terms of the complexity.
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1. INTRODUCTION
Taxi service has long been an indispensable part of public

transportation in modern cities due to its high flexibility,
great comfortableness, and easy accessibility. However, op-
erated by a large number (e.g., around 66,000 in Beijing [2])
of self-controlled and profit-driven taxis, taxi systems are
quiet inefficient and difficult to analyze and regulate. Be-
sides, taxi systems can be affected by many factors ranging
from road condition, customer demand, to fare price setting,
which not only depend on each other in a very complex way,
but also vary with time. How to analyze, regulate and op-
timize the taxi system are thus important but challenging
problems, which have attracted many research interests over
the past decades [4, 1, 3]. Among these problems, the taxi
system optimization problem aims at improving efficiency of
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taxi systems though adjusting the taxi fare. Related work
on this topic found in the transportation science community
(e.g., [7, 8, 6]) mostly focused on modeling the interdepen-
dencies among factors in the system but ignored taxi drivers’
behaviors which contribute the most to the characteristics
of taxi systems. Specifically, profit-driven taxi drivers com-
pete with each other for their maximum profits. These com-
peting behaviors determines how taxi drivers react to fare
structure changes and cannot be ignored in the analysis.
In order to include the taxi drivers’ behaviors, Gan et al.
recently proposed a game theoretical approach to model a
time-varying taxi market [5]. The key to such an approach is
to address the scalability issue encountered in computing the
taxi drivers’ best strategy. A compact representation of the
taxi drivers’ strategy space, called Atom Schedule Method
(ASM), was proposed to address this issue. Unfortunately,
ASM is still inefficient in dealing with large-scale problems.

In our work, a more efficient algorithm—FLORA—is pro-
posed to address the scalability issue. FLORA provides a
novel compact representation of the taxi drivers’ pure strat-
egy space by utilizing convex polytope representation con-
version techniques. Experiment were conducted to evaluate
FLORA. The results show that FLORA can produce orders
of magnitude improvement over existing algorithm in both
time and space complexities.

2. TAXI SYSTEM OPTIMIZATION
Derived from a multi-period model based on existing trans-

portation research (e.g., [9, 10, 5]), the taxi system optimiza-
tion problem is defined by the following bilevel program.

max
f

E (f ,p(x∗)) (1)

s.t. x∗ ∈ argmax
x

U (f ,p(x)) (2)

The term bilevel refers to the two levels of optimization pro-
grams. In the first level program (Eq. (1)), we maximize the
efficiency E of the taxi system through adjusting the fare
price f . E is a function of f and the percentage p of work-
ing taxis, and p is furthermore a function of taxi drivers’
strategy (we assume that all the taxis are identical, so that
the taxi divers choose the same strategy). Note that in or-
der to study a time-varying taxi system, the model divides
the optimization horizon (e.g., a whole day) equally into a
set of n periods, and treat the system in each period as a
uniform system. Thus, f and p are vectors f = (f1, . . . , fn)
and p = (p1, . . . , pn) with f i and pi corresponding to the ith

period. The second level program (Eq. (2)) indicates that
taxi drivers choose the best strategy with respect to their u-
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tility U (which also depends on f and p). A strategy x is a
mixed strategy, i.e., a distribution over a set of pure strate-
gies. Each pure strategy is a working schedule denoted by
a vector s ∈ {0, 1}n, where si = 1 (resp. si = 0) represents
working (resp. not working) in the ith period. We require
that a schedule satisfy the following constraints.

C1: total working time should be at most nw periods.

C2: continuous working time should be at most nc periods.

Let the set of n-period schedules satisfying C1 and C2 be
S . It follows that p can be calculated as p(x)=

∑
s∈S xss,

where x = 〈xs〉, and xs is the probability of schedule s.
To resolve the bilevel program, we discretize the fare price

space into a set F of candidate prices. For each price f ∈ F ,
we first solve the second level program to calculate x∗, and
then take it to the function of E to calculate the efficiency
under price f . In such a way, the price with maximum
efficiency is the optimal price for the problem. Therefore,
the key is to solve the second level program, where there
is a scalability issue as the number of variables (i.e., |S|) is
exponentially large in terms of the number of periods.

To address this issue, we propose an algorithm called
FLORA (FuLly cOmpact RepresentAtion), which is in con-
trast with the partially compact representation of ASM.
FLORA reformulates the bilevel program as

max
f

E (f ,p∗) (3)

s.t. p∗ ∈ argmax
p∈P

U (f ,p) (4)

The idea is to compute the p∗ = p(x∗) directly without com-
puting the best strategy x∗ first. To guarantee that the p∗

obtained from the second level program can be implemented
by schedules satisfying C1 and C2, we utilize polytope rep-
resentation conversion techniques (indeed, the feasible set of
p is a convex polytope of the set S of n-dimensional points),
and define the feasible set P by the following inequality set.
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,

where In denotes an n×n identity matrix. In such a way, the
FLORA formulation is equivalent to the original formulation
in Eqs. (1) and (2). The proof of the equivalence is omitted
due to page limit. The new formulation has only n variables
and less than 3n constraints, and can be easily solved.

3. EVALUATION AND CHALLENGES
Experiments were conducted to compare the scalability of

FLORA with ASM. Figure 1 depicts the runtime and mem-
ory use for solving the second level program. The results
show that FLORA produces orders of magnitude improve-
ment in both time and space complexities in comparison to
ASM. FLORA is able to solve optimization problem with
100 periods very efficiently and still has the potential to
handle even larger problems.
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Figure 1: Runtime and memory use scalability.

A limitation of both ASM and FLORA is that they can
only solve problems with constraintsC1 andC2, and cannot
deal with situations where other types of practical schedul-
ing constraints (e.g., minimum continuous working/resting
time constraint or constraints resulted from market regula-
tions) exist. Algorithm capable of handling additional con-
straints are needed to calculate more accurate optimal fares
in these situations.
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