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ABSTRACT
We introduce a Security Game with a single static guard that is
supported by a number of spatially imperfect alarms. We model
this setting with two non–cooperative games modeling two differ-
ent strategic interactions between a Defender and an Attacker. In
the first one the Defender has to respond to an activated alarm given
its current position (Alarm–Response Game). In the second one,
the Defender has to determine the best static placement from which
undertakes any alarm response (Guard–Placement Game).

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Multi–agent systems

General Terms
Algorithms, Economics

Keywords
Game Theory (cooperative and non-cooperative), Surveillance and
Security

1. INTRODUCTION
Security Games with both mobile and static resources represent

an interesting enrichment of traditional models [3] where homoge-
neous resources are customarily assumed [2]. Along this direction,
recent works [4] suggested the study of graph patrolling problems
where the Defender can control a single mobile resource (called
patroller) and, at the same time, is supported by a number of static
resources called alarms. Alarms are viewed as devices capable of
detecting and signaling the presence of an Attacker in a vertex of
the graph and characterized by detection error models (false pos-
itives and missed detection rates). In this paper, we introduce a
novel security game where alarms are instead spatially imperfect,
meaning that they can signal the location of an Attacker only within
a subset of vertices. We propose the adoption of two linked non–
cooperative games to derive the Defender’s optimal patrolling re-
sponse to a given alarm from a given location on the graph and its
best overall placement on the graph, respectively.
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2. PROBLEM FORMULATION
We share basic definitions with [1] by considering an undirected

graph G(V,E) where we denote wij ∈ N>0 the time needed to
move from vertex i to vertex j and vice versa. We denote T ⊆ V
the set of targets, namely vertices where attacks can take place.
Each target t ∈ T has a value π(t) ∈ (0, 1] and requires the in-
truder to spend d(t) time steps to complete an attack in it. A De-
fender patrols the graph moving between vertices and spending the
associated temporal cost w. At each visit of a vertex, the Defender
checks for the presence of an Attacker.

We have a set of alarms, defined as {Ta : Ta ⊆ T, a ∈ {1 . . .m}}.
Each element Ta ⊆ T corresponds to a subset of targets for which
the Defender could expect to receive a signal indicating that some
malicious activity is taking place there. We denote this signal as
alarm a, and we assume that, once issued, it provides the Defender
with knowledge that a target t ∈ Ta is under attack. If alarm a is
activated, we will refer to Ta as the set of alerted targets and we
will call alerted graph the complete graph Ga = (Va, Ea) where
Va = {{vD} ∪ Ta}, and Ea is the complete set of edges over Va

where wa
ij is the shortest time to move between i and j in G.

The Defender placement is fixed at a vertex vD ∈ V from where
it must respond to alarms, that is clearing the associated alerted
graph by visiting each alerted target ta ∈ Ta before time k+d(ta),
where k is the time at which alarm a was issued. The threat is mod-
eled with a single Attacker that can strike a single target t ∈ T at
any time. In general, the Defender cannot cover all the targets as-
sociated to an activated alarm and, therefore, it needs to randomize
over routes that clear only some targets. If the Defender chooses
a route that does not include the attacked target, then the attack is
successfully completed. See Fig. 1 for an example setting.

3. GAME MODELS
We study the above settings by introducing two problems which

correspond to two non–cooperative games formulations.

Problem 1 (Alarm Response) Given Defender location vD and
alarm a, what is the best graph-clearing strategy to respond to a?

We cast this problem to the resolution of a two-player strategic-
form game that we call Alarm Response Game (ARG) and that is
described by the tuple (Ga, Ta, vD, d, π). The set of Attacker’s
pure strategies is given by Ta, namely choosing which target to at-
tack among those covered by alarm a. The Defender’s pure strate-
gies are the possible responses to a and are given by the set of cov-
ering routes over Ga starting from vD: R = {r1, r2, . . .}, where
covering route ri = 〈vD, tij〉j∈{1...|ri|} is an ordered sequence of

vertices such that the time required to go from vD to a target tij

1481



v1

v3

V2

Alarm 1

Alarm 2

v4
d=1

v5
d=2

v6
d=3

v7
d=1

v8
d=3

Figure 1: Example with 2 alarms. (Targets have deadlines dt,
π(t) = 6 for all t, v1 is the optimal guard placement.)

when following sequence ri is never larger than that target’s dead-
line. If a route satisfies this requirement it is a covering route.

A strategy profile for this game is defined as σ = {σD, σA}
where σD (σA) is a probability distribution over the Defender’s
(Attacker’s) pure strategies. With a slight overload of notation, we
indicate a pure strategy profile as σ = {ri, t} meaning that the
Defender and the Attacker assign full probability to covering route
ri and target t, respectively. Given a pure strategy profile defined
in this way, payoffs are determined according to the following rule
(Defender and Attacker are first and second player, respectively):

U({ri, t}) =
{
[1, 0] if t ∈ ri

[1− π(t), π(t)] otherwise.

The Attacker’s expected utility of playing ta ∈ Ta is simply
defined as: EU(σD, ta) =

∑
r∈Rρ

σD(r)U({r, ta}). Being the

game constant-sum, the Defender’s equilibrium strategy is given by
σ∗
D = argmaxσD minta∈Ta EU(σD, ta) and the game’s maxmin

value is denoted as u(vD, Ta).

Problem 2 (Guard Placement) What is the best placement vD ∈
V to obtain maximum expected utility in responding to any alarm?

We cast this problem to the resolution of a two-player Stack-
elberg game that we call Guard Placement Game (GPG) whose
structure is: (1) the Defender selects the vertex vD where to place
itself; (2) the Attacker observes the move of the Defender; (3)
the Attacker selects an alarm. Fixed vD and an alarm a, the best
strategy of the Defender (i.e., a randomization over the covering
routes) and the best strategy of the Attacker (i.e., a randomiza-
tion over the targets to be attacked) are uniquely determined as de-
scribed by the previous game. We define this game with the tuple
(V, {Ta}a∈{1,...,m}, u), where V is the set of the actions avail-
able to the Defender, {Ta} is the set of actions available to the
Attacker, and u : V × {Ta} → R is the utility function of the
Defender given the actions undertaken by the players. Utility func-
tion u is determined by solving the corresponding instance of an
Alarm–Response Game where vD and Ta are fixed. We can de-
scribe the game by using a matrix U in which the rows are the
actions V of the Defender and the columns are the actions Ta of
the Attacker, while each cell of the table is associated with utility
u(vD, Ta). The Stackelberg equilibrium can be found computing

u∗(vD) = min
Ta

u(vd, Ta) for every vD , and then deriving the best

placement as v∗D = argmax
vD

u∗(vD). In this way, the Defender

selects the action that, once the Attacker has undertaken its action
after having observed the action undertaken by the Defender, will
provide the largest expected utility to the Defender.

4. DISCUSSION
Despite its simplicity, the scenario proposed in this paper poses

several interesting directions of research that will be investigated
in our next works towards the development of a game–theoretical
framework for patrolling with alarms.

The need for patrolling. The model we introduced assumes the
presence of a static Defender that selects a fixed location in the en-
vironment and takes action only when triggered by an alarm. This
is an assumption that simplifies the task of computing a patrolling
strategy in the broad sense in presence of alarms, i.e., a strategy that
prescribes to visit different vertices at different times. As indicated
by some experiments we performed with the model of [4], such
task is remarkably computationally demanding. Given this draw-
back, the development of heuristic solutions can be worth studying
in the attempt to understand how the need for patrolling changes its
importance when support from alarms is available.

Spatial uncertainty. Spatially uncertain alarms represent the
main novelty introduced by the above game setting. In the model
presented here, such uncertainty is assumed to be spatially uniform.
That is, given an activated alarm a, the Defender can derive a uni-
form belief over the location of the Attacker among the covered
targets Ta. This assumption can be relaxed by generalizing the
concept of alarm to that of signal which, with a certain probability,
is generate by an attack in a target t. Adopting this more general
setting, in principle, any probabilistic belief over the Attacker’s ac-
tual location is allowed.

ARG covering routes. The most obvious computational chal-
lenge is posed by the ARG model, and concerns the computation
of the Defender’s actions for such a game, i.e., a set of covering
routes. Given a set of targets Ta, computing the set of possible
routes that guarantee to protect subsets of Ta as well as defining
dominance relations among such actions is not trivial task. For this
reason, after assessing the problem’s complexity, algorithms to ap-
proximate such set of actions can be a useful tool to enable the
resolution in realistically large settings.

Detection errors. Towards the aim of building a unified frame-
work with [4] for patrolling with alarms, a natural extension is to
include the presence of alarms which are also characterized by de-
tection errors. The coexistence of spatial and detection uncertain-
ties for alarms in patrolling games is a novel problem whose reso-
lution would fit several application settings.
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