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ABSTRACT
Realistic multi-agent team applications often feature dynamic envi-
ronments with soft deadlines that penalize late execution of tasks.
This puts a premium on quickly allocating tasks to agents, but find-
ing the optimal allocation is NP-hard because tasks must be exe-
cuted sequentially by agents. We propose a novel task allocation
algorithm that finds allocations that are fair (envy-free), balancing
the load and sharing important tasks between agents, and efficient
(Pareto optimal) by using a Fisher market based on a simplified
problem model. Such allocations can be easily sequenced to yield
high quality solutions, as shown empirically on problems inspired
by real police logs.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: [Multiagent systems]
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1. INTRODUCTION
We formulate a novel task allocation problem in which agents move
to perform dynamically-arising, spatially-situated tasks under soft
deadlines that decrease utility the longer tasks are unperformed.
Agents can share tasks to reduce workloads and speed up task exe-
cution. Inspired by law enforcement applications, we term this the
Law Enforcement Problem (LEP). We propose a novel task alloca-
tion algorithm, FMC_TA, that first solves a simplified form of LEP
using a Fisher market to obtain an initial allocation that is efficient
and balanced over agents, then schedules the allocation for each
agent according to a greedy heuristic.

2. LAW ENFORCEMENT PROBLEM
The dynamic Law Enforcement Problem (LEP) is modeled as a se-
quence of static problems instantiated when a new task arrives. In
each static problem, cooperative agents (police units) a1, . . . , an
must be allocated tasks v1, . . . , vm. Travel time between ai’s cur-
rent location and vj , or between two tasks vj , vj′ , is denoted by
ρ(ai, vj) and ρ(vj , vj′), respectively.

There are two kinds of tasks: neighborhood patrols and events
that require a police response. Every task vj has arrival time α(vj)
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and importance I(vj) > 0; patrols are generally less important
than events. Events also have a workload w(vj) specifying the
amount of work (in time units) required to complete the task. Pa-
trols have no workload but agents derive utility at a constant rate
while patrolling. We assume that every task can be performed by
a single agent but that multiple agents can also share a single task
with additive contributions; shared events also divide the workload.

An allocation is an n×m matrix X where entry xij is the frac-
tion of task vj assigned to ai. Agents can only perform a sin-
gle task at a time, so tasks allocated to agent ai must be ordered
into a schedule σi = (vs1 , t1, t

′
1), . . . , (vsMi

, tMi , t
′
Mi

) of Mi

triples of the form (vsk , tk, t
′
k), where vsk is the task performed

from time tk to t′k. The time spent on each task must equal ai’s
assigned share of the workload so t′k − tk = xiskw(vsk ) for
1 ≤ k ≤ Mi. Agents can only perform tasks at their current
location, so tk+1 − t′k ≥ ρ(vsk , vsk+1) for 1 ≤ k < Mi and
t1 ≥ t+ ρ(ai, vs1) for allocation at time t.

Interrupting the current task CTi of ai incurs a penalty that de-
pends on the total amount of work remaining, ∆w. If vj 6= CTi,
this penalty is π(vj ,∆w) = max{I(vj)c

∆w, φI(vj)}, where c ∈
[0, 1) and φ > 0 are constants, with φI(vj) denoting the minimum
penalty. There is no penalty if vj = CTi or if CTi is a patrol.

The utility of working on vj decreases with the time t when task
execution begins, according to the soft deadline function, δ(vj , t) =

βγ(t−α(t)), where β ∈ (0, 1] and γ ≥ 0 are constants; γ = 0 for
patrols as they have no deadline. Utility for a single agent ai is

U(ai) =

(
Mi∑
k=1

xiskI(vsk )δ(vsk , tk)

)
− π(vs1 ,∆w)

and the total team utility is the sum of utilities for every agent.

3. FMC-BASED TASK ALLOCATION
We propose an innovative task allocation algorithm, FMC_TA, based
on Fisher market clearing (FMC). FMC_TA first creates a Fisher
market instance [5] with agents as buyers and tasks as goods; agents
are given equal monetary endowments. The matrix R specifying
buyer preferences for goods is created by considering agent util-
ity in a simplified task allocation problem that ignores inter-task
spatial and temporal constraints. Specifically,

rij = xijI(vj)− ρ(ai, vj)− π(CTi,∆w).

FMC_TA next solves the Fisher market to get an allocation X
that is envy-free and Pareto optimal with respect to the simplified
problem [5]. These properties ensure that we achieve an efficient
allocation that is balanced over the agents. We demonstrate in Sec-
tion 4 that this results in higher team utility in the full LEP than
directly trying to maximize the utility represented by R. The FMC
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Figure 1: Accumulated team utility for shifts with 60 events.
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Figure 2: Response times compared to centralized approaches.

allocation can be computed in polynomial time in a centralized set-
ting [2] or in pseudo-polynomial time in a distributed setting [6].

The final stage of FMC_TA schedules the fractions of tasks allo-
cated to agents using a greedy heuristic that maximizes the utility
that agents will derive from fulfilling a task. Each ai schedules its
tasks in decreasing order of xijrij . This can be done independently
by each agent in both centralized and distributed settings.

4. EXPERIMENTAL EVALUATION
We compare FMC_TA to five centralized benchmark algorithms.
Two are versions of simulated annealing: SA used a random start-
ing point on every reallocation while SA+ started from the previ-
ous allocation. CFLA+ is a version of CFLA [4] adapted to LEP
by computing the maximum utility for pairs of tasks taking into
account the soft deadlines. Greedy allocates tasks in decreasing
order of importance to the agent that would derive highest utility.
LP is identical to FMC_TA except that it finds X by using a linear
program that directly maximizes team utility as represented by R.

We considered 20 random problems of an 8-hour shift with 9
agents in a city of 6 × 6 km divided into 9 neighborhoods. There
were four types of events of decreasing importance from type 1
to type 4. Distribution of event types and workloads were based
on police estimates, with 30%, 40%, 15%, 15% of events from
type 1 to 4. Workloads were drawn from exponential distributions
with means 58, 55, 45, 37 for events of type 1 to 4. Locations were
selected uniformly at random in the 6× 6 planar region.

FMC_TA accumulates utility faster than the other approaches, as
shown in Figure 1 for shifts of 60 events; this gap is larger when
considering shifts with fewer events. LP outperforms CFLA+ and
Greedy, suggesting that the simplification in optimizing with re-
spect to R is beneficial. However, the large gap between LP and
FMC_TA indicates that direct optimization is less effective than
one that seeks envy-freeness and Pareto optimality.

Rapid responses (short arrival times) are highly-valued by po-
lice departments, especially for more important events. FMC_TA
outperforms the other approaches in this respect as well, as seen in
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Figure 3: Response times compared to distributed approaches.

Figure 2. This is due to much faster responses to the more impor-
tant type 1 and type 2 events, achieved by sharing more tasks than
the other approaches (not shown for lack of space).

FMC_TA is similarly effective when compared to distributed ap-
proaches. Figure 3 shows that FMC_TA achieves faster response
times than three leading DCOP algorithms: DSA [7], Distributed
Simulated Annealing (DSAN) [1], and MGM-2 [3]. Again, this
is especially true of more important tasks, resulting in FMC_TA
achieving higher team utility (omitted for lack of space).

5. CONCLUSIONS
In this paper we proposed a new approach for dynamic task allo-
cation that uses a simplified problem model to generate fair (envy-
free) and efficient (Pareto optimal) allocations. We hypothesized
that this combination of properties results in high quality solutions
for task allocation problems in which we want all agents to con-
tribute efficiently in order to achieve the group goal. Our exper-
iments support this hypothesis, demonstrating the advantages of
FMC_TA over competing centralized and distributed algorithms.

In future work we intend to investigate the use of non-linear util-
ity functions. This will allow us to represent cooperative synergies
where the utility derived by a group of agents is greater than the
sum of utilities if each agent acted on its own.

6. REFERENCES
[1] M. Arshad and M. C. Silaghi. Distributed simulated

annealing. Distributed Constraint Problem Solving and
Reasoning in Multi-Agent Systems, Frontiers in Artificial
Intelligence and Applications series, 112, November 2004.

[2] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V.
Vazirani. Market equilibrium via a primal-dual-type
algorithm. In FOCS ’02, Washington, DC, USA, 2002.

[3] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham. Distributed algorithms for DCOP: A
graphical-game-based approach. In PDCS ’04, San Francisco,
CA, USA, 2004.

[4] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and
N. R. Jennings. Coalition formation with spatial and temporal
constraints. In AAMAS’10, Richland, SC, 2010.

[5] J. H. Reijnierse and J. A. M. Potters. On finding an envy-free
Pareto-optimal division. Mathematical Programming,
83:291–311, 1998.

[6] L. Zhang. Proportional response dynamics in the Fisher
market. In ICALP ’09, Berlin, Heidelberg, 2009.

[7] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparison and applications to constraints optimization
problems in sensor networks. Artificial Intelligence,
161:1-2:55–88, January 2005.

1496




