
Hardware-based Agent Modelling: Event-Driven Reactive
Architecture (EDRA)

(Extended Abstract)

Eduardo A. Gerlein
gerlein-e @email.uslter.ac.uk

T.M. McGinnity
tm.mcginnity@ulster.ac.uk

Ammar Belatreche
a.belatreche@ulster.ac.uk

Sonya Coleman
sa.coleman@ulster.ac.uk

Yuhua Li
y.li@ulster.ac.uk

University of Ulster, Intelligent Systems Research Centre. Londonderry, Northern Ireland (UK)

ABSTRACT

Multi-Agent Systems (MAS) have been recognised as a promising

solution to address complex problems in many areas. However such

systems are extremely hungry in terms of computational resources.

Field Programmable Gate Arrays (FPGAs) offer great performance

improvement over software implementations in terms of

computational resource allocation but applications of multi-agent

systems in such hardware have been poorly explored. This paper

describes an Event Driven Reactive Architecture (EDRA), which

is a novel multi-agent architecture for reconfigurable hardware.

The EDRA approach enables the design and implementation of the

internal architecture of agents targeted to be deployed in FPGA,

based on fine-grained task decomposition to generate reactive

structures triggered by signals through consistent hardware

interfaces that enable the internal flow of information.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Languages and

structures, Multi-agent systems

General Terms

Design, Theory, Languages.

Keywords

Multi-Agent Systems, Agent Architectures, FPGA, Reconfigurable

Hardware.

1. INTRODUCTION
A system of interacting agents is in essence highly complex and

parallel, and therefore consumes substantial computing power [1].

Generally agent-based frameworks and APIs are targeted at

traditional serial processors, whose lack of inherent parallelism

may seriously affect both performance and the scalability of models

when simulating at massive scale. Practical experiences in parallel

and distributed implementations have shown that such

implementations have difficulties in scaling up to large simulations

[10]. Field Programmable Gate Arrays (FPGA) are a very

promising technology for high performance computing with a

highly parallel and flexible architecture [5]. Paradoxically,

although reconfigurable hardware seems be the next logical step in

the development of multi-agent technology, only a very limited

number of projects have reported reconfigurable hardware multi-

agent implementations[3] [7] [8].

To date, hardware agents are difficult to engineer since there is no

clear methodology for design and deployment that incorporates a

similar level of conceptualization as in software implementations

while at the same time, takes into account the specific requirements

for deployment in reconfigurable hardware [9]. The EDRA model

proposed in this paper presents a systematic approach for agent

design targeted for FPGA implementation, based on fine-grained

task decomposition at agent level to generate reactive structures

called behaviours, triggered by signals named events driven by

consistent hardware interfaces that enable internal flow of

information.

2. EVENT-DRIVEN REACTIVE

ARCHITECTURE (EDRA)
The EDRA model relies on Brooks’ subsumption architecture [2],

which states that intelligent agents can be modelled as an

aggregation of interacting reactive modules called “triggered

behaviours”. EDRA implements the Organizational Approach for

Agent Oriented Programming (AOPOA) methodology introduced

in [6]. EDRA modelling goes deeper into the design than AOPOA,

proposing an internal micro-architecture using an agency approach,

establishing structured fine-grained task decomposition inside

agents to generate reactive behaviours triggered by events, and

linking them with consistent hardware interfaces to enable internal

flow of information. The triggered behaviours described in the

subsumption architecture can be easily encoded into circuits to map

physical perception channels into hardware modules offering

design simplicity and deterministic latency and throughput. The

EDRA model supports its agency approach with two main

concepts: (a) fine-grained decomposition of agent goals by means

of behaviours; (b) interaction management through the design of

consistent interfaces called events.

2.1 Agent’s Goal Decomposition: Behaviours
According to the AOPOA methodology [6] a Multi-agent System

(MAS) can be described as an iterative tree of goals, where the root

represents the system’s main goals and the derived child nodes

represent the agent’s sub-goals named roles. In this iterative

decomposition, the final leaf nodes represent the agents that will be

deployed in the system. To implement hardware agents, EDRA

states that the task decomposition must continue inside the agents

seeking the simpler of these roles or tasks, until reaching the lowest

level of complexity, evaluated by heuristic assessment, due to the

fact that they must be implemented using reconfigurable circuitry.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan, and Michael

Huhns (eds.), Proceedings of the 13th International Conference on

Autonomous Agents and Multi-agent Systems (AAMAS 2014), May 5-9,

2014, Paris, France.

Copyright © 2014, International Foundation for Autonomous Agents and

Multi-agent Systems (www.ifaamas.org). All rights reserved.

1497

Figure 1. Architecture of an EDRA Behaviour based in the
model proposed in [8] . Events used to communicate behaviours

are represented by ports and signals. Flag events can be

represented by bit-related types and informative events can be

represented also by bit-related and vector-related types

These basic task structures are named behaviours. Inside an agent,

behaviours will interact in order to achieve the particular goals for

which they have been designed, in the same way that agents interact

to pursue the system’s goals, forming internal micro-societies.

From a purely practical perspective, the defined behaviours are

modelled and implemented as independent modules that are further

instantiated in a single hardware description file to construct each
individual agent.

The behaviour interactions are called events, and can be grouped

into two types: informative events and flag events. Informative

events involve the passing of raw information, i.e., processed

results or information from and to the environment. Flag events are

those representing announcements, requests, or acknowledge in

handshake protocols. The events can be associated with I/O ports

and Communication ports for informative events and Control ports

for flag events in a VHDL entity. Naji’s agent architecture [8],

actually serves as basis for the behaviour’s architecture in the

EDRA model.

2.2 Behaviours’ Hardware Model
Figure 1 presents a generic architecture of a behaviour. In order to

produce a synthesizable model in hardware, flag events can be

represented by bit-related signals and informative events can be

represented also by bit-related signals or vector-related signals

depending on the needs and characteristics of the information.

The ports used for managing flag events are: (a) Clock – used in

most of the complex digital circuits to coordinate general

execution; (b) Strobe – listening port used for activation of a

particular behaviour, requesting the execution of a programmed

task or to indicate that particular information is available to be

processed; (c) Ready – signal used by a behaviour to indicate its

programed task is finished. It is meant to be connected to a strobe

port in another behaviour or agent; (d) Request/Ack – used to call

for the execution of a desired task or associated to a request-data-

acknowledge protocol. For informative events, four types of ports

are defined: (a) Communication Reception Port (ComRx) –handles

incoming information from inside the system; (b) External input –

handles incoming information from an external source; (c)

Communication Transmission Port (ComTx) – this port handles

outgoing information inside the system; (d) External output –used

to send data or information to an external destination. If

communication protocols are consistent across the system it is

possible to create generic facilitator behaviours that in practice will

be beneficial for code reuse. On the other hand, external outputs

such as drivers for sensors or actuators, or network adapters are

generally media-dependent which must be customized according to

different applications such as video interfaces or analog-to-digital

sensor drivers.

If the system has relative low complexity or incorporates a small

number of agents and the interactions between them are predefined

ad initio at design time, the same approach can be adopted to

communicate different agents using a peer-to-peer communication

strategy as proposed in [8] .

3. DISCUSSION AND FUTURE WORK
The EDRA model presented in this paper allows a designer to

construct internal agent architecture using a systematic approach

favouring modular construction, flexibility and re-use of structures.

EDRA provides consistency in signal treatment at the hardware

level while keeping the agency abstraction intact. EDRA

methodology has been used to implement a Multi-Agent Trading

Engine suitable for high frequency trading [4]. Future research will

investigate how to design a truly Multi-Agent System on Chip

(MASoC) using the EDRA methodology at agent level,

incorporating System on Chip techniques at society and system

levels.

4. ACKNOWLEDGMENTS
Eduardo Gerlein is supported by a Vice-Chancellor Research

Scholarship (VCRS) from the University of Ulster, as part of the

Capital Markets Engineering project.

5. REFERENCES
[1] Ajitha, S. et al. 2009. Predicting Performance of Multi-

Agent systems during feasibility study. 2009 Int. Conf. on

Intelligent Agent & Multi-Agent Systems (Luxembourg, Jul.

2009), 1–5.

[2] Brooks, R.A. 1986. A robust layered control system for a

mobile robot. IEEE Journal on Robotics and Automation. 2,

1 (1986), 14–23.

[3] Chen, E. et al. 2011. Dynamic Partial Reconfigurable FPGA

Framework For Agent Systems. Proceedings of the

Industrial Applications of Holonic and Multi-Agent Systems.

(2011).

[4] Gerlein, E.A. et al. 2014. Multi-agent Pre-trade Analysis

Acceleration in FPGA. Computational Intelligence for

Financial Engineering and Economics - CIFEr2014

(London, U.K., 2014).

[5] Gokhale, M. et al. 2008. Hardware Technologies for High-

Performance Data-Intensive Computing. Computer. 41, 4

(Apr. 2008), 60–68.

[6] González, E. and Torres, M. 2006. Organizational Approach

for Agent Oriented Programming. 8th Int. Conf. on

Enterprise Information Systems - ICEIS (Paphos - Cyprus,

2006), 75–80.

[7] Meng, Y. 2006. An Agent-Based Architecture on

Reconfigurable System-on-Chip for Real-Time Systems.

Handbook on Mobile and Ubiquitous Computing:

Innovations and Perspectives. American Scientific

Publishers. 1–17.

[8] Naji, H.R. et al. 2004. Applying multi agent techniques to

reconfigurable systems. Advances in Engineering Software.

35, 7 (Jul. 2004), 401–413.

[9] O’Sullivan, T. and Studdert, R. 2005. Agent technology and

reconfigurable computing for mobile devices. Proceedings

of the 2005 ACM symposium on Applied computing -

SAC ’05 (New York, New York, USA, 2005), 963.

[10] Pawlaszczyk, D. 2009. Scalability in Distributed

Simulations of Agent-Based Models. WSC ’09 Winter

Simulation Conference. section 3 (2009), 1189–1200.

1498

