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ABSTRACT
We consider stable matching problems where the agents express
their preferences compactly via soft constraints. We study the im-
pact of this choice on the computational complexity of finding sta-
ble matching, with particular attention to fuzzy constraints.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; F.2 [Theory of Computation]: Analysis of
Algorithms and Problem Complexity

General Terms
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1. INTRODUCTION
The stable matching (SM) problem is a well-known problem

with many practical applications. It has to do with two sets of
agents, often called men and women, that should be matched in
such a way that no man and woman, who are not married to each
other, both prefer each other to their current partner [5]. This prop-
erty is called stability. Problems of this kind arise in many real-life
situations, such as assigning junior doctors to hospitals, children to
schools, students to campus housing, kidney transplant patients to
donors, and so on. The most well-known and used algorithm to find
a stable matching is the GS algorithm [4], that runs in polynomial
time. This algorithm assumes that both men and women express
their preferences over all members of the other gender. However,
this can be unfeasible, since the number of men and women can be
very large. In addition, eliciting the preferences may be a costly and
time-consuming process. Fortunately, the sets of men and women
may have a combinatorial structure, which allows for expressing
preferences in a compact way by referring to features rather than
entire men or women.

Our challenge is to understand how to adapt the GS algorithm
to work with such preference statements over features, expressed
via soft constraints, and to study the impact of this approach over
the computational properties of the algorithm. The main operations
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performed by the GS algorithm are the following ones: men need
to exploit their preferences over women to find their most preferred
woman, and possibly also their next most preferred woman (several
times), while women need to compare two men according to their
preferences over men. We study what it means to perform such
operations in a soft constraint setting. Moreover, soft constraints
induce a total order over men and women, possibly with ties. The
GS algorithm requires a strict total order (that is, no ties) over men
and women. We consider three ways to break ties, with particular
attention to fuzzy constraints.

A similar study was done using CP-nets instead of soft con-
straints [6]. However, CP-nets [1] have very different properties
from soft constraints, both in terms of expressiveness and of com-
putational complexity of reasoning with them.

2. STABLE MATCHING PROBLEMS
The stable marriage problem (SM) [5] is a well-known problem

of matching n men to n women to achieve a certain type of ‘sta-
bility’. Given n men and n women, where each person expresses
a strict total ordering over the members of the opposite sex, the
problem is to match the men to the women such that no two people
of the opposite sex, who are not married to each other, both prefer
each other to their current partners. If there are no such pairs, called
blocking pairs, every marriage is stable.

In [4] Gale and Shapley (GS) provided an O(n2) time algorithm
for finding a stable marriage. The GS algorithm consists of a num-
ber of rounds in which each un-engaged man proposes to his most
preferred woman to whom he has not yet proposed. Each woman
receiving a proposal becomes “engaged”, provisionally accepting
the proposal from her most preferred man. In subsequent rounds,
an already engaged woman can “trade up”, becoming engaged to
a more preferred man and rejecting a previous proposal, or, if she
prefers him, she can stick with her current partner. Given a match-
ing M, we will denote with M(w) (resp., M(m)) the man (resp.,
woman) associated to the woman w (resp., man m) in M. Also,
pre f (x) denotes the preference list of a man or a woman x. The GS
algorithm includes the following operations: Opt(pre f (m)): Com-
putes the optimal woman for m (i.e., m’s first proposal); Next(pre f (
m), w): computes the next best woman after w for man m (i.e.,
a new proposal for m); Compare(pre f (w),m,m′): returns true if
woman w prefers man m to m′. This is needed when woman w,
currently matched with m′, must decide whether to accept or de-
cline a proposal from m.

3. SOFT CONSTRAINTS
A soft constraint [7] involves a set of variables and associates

a value from a (partially ordered) set to each instantiation of its
variables. Such a value is taken from a c-semiring which is defined
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by 〈A,+,×,0,1〉, where A is the set of preference values, + induces
an ordering over A (where a≤ b iff a+b= b),× is used to combine
preference values, and 0 and 1 are respectively the worst and best
element. A Soft Constraint Satisfaction Problem (SCSP) is a tuple
〈V,D,C,A〉 where V is a set of variables, D is the domain of the
variables, C is a set of soft constraints (each one involving a subset
of V ), A is the set of preference values. An instance of the SCSP
framework is obtained by choosing a specific c-semiring. Choosing
SFCSP = 〈[0,1], max,min, 0, 1〉 means that preferences are in [0,1]
and we want to maximize the minimum preference. This is the
setting of fuzzy CSPs (FCSPs) that we consider in the paper.

An optimal solution of an SCSP is a complete assignment with
an undominated preference. Finding an optimal solution is an NP-
hard problem, unless certain restrictions are imposed, such as a
tree-shaped constraint graph. Constraint propagation may help the
search for an optimal solution. Given a variable ordering o, an
FCSP is directional arc-consistent (DAC) if, for any two variables
x and y linked by a fuzzy constraint, such that x precedes y in the
ordering o, we have that, for each a in the domain of x, fx(a) =
maxb∈D(y)(min( fx(a), fxy(a,b), fy(b))), where fx, fy, and fxy are
the preference functions of cx, cy and cxy. This definition can be
generalized to any instance of the SCSP approach by replacing max
with + and min with ×. DAC is enough to find the preference
level of an optimal solution when the problem has a tree-shaped
constraint graph and the variable ordering is compatible with the
father-child relation of the tree [7], since the optimum preference
level is the best preference level in the domain of the root variable.

4. STABLE MATCHING WITH SOFT CON-
STRAINTS

We consider a stable marriage problem with n men and n women,
where each man and each woman specify their preferences over the
members of the other gender via a set of soft constraints. Each man
and woman is described by a set of features, that are represented
by the variables of the soft constraint problems. If each variable
has d possible values, the number of variables, say f , of each soft
constraint problem is O(logdn).

GS operations. In the GS algorithm, men make proposals, starting
from their most preferred woman and going down in their ordering,
while women receive proposals and compare these against the man
to whom they are currently engaged. We will now model the GS
operations.

Opt(pre f (m)) must return the optimal solution of an SCSP defin-
ing the preferences of man m over the women. In general, finding
the optimal solution of an SCSP is a computationally difficult prob-
lem. However, if the SCSP has a tree-like shape, or a bounded
tree-width, it can be done in polynomial time [7].

Compare(pre f (w),m1, m2) compares two complete assignments
m1 and m2 and check if m1 is strictly more preferred to m2. In SC-
SPs, this is computationally easy to do, if the combination operator
is polynomially computable and there is a polynomial number of
constraints. In fact, m1 is strictly preferred to m2 when the prefer-
ence of m1 for w is strictly greater than that of m2 for w. Notice
that women need only to perform Compare operations. Thus we
do not need any restriction on the shape of the constraint graph for
women’s preferences to make Compare polynomial.

For the Next(pre f (m),w) operation, we need to understand how
to linearize the solution ordering of an SCSP. In fact, this operation
is used to find the next most preferred woman in a man’s preference
ordering, so when two or more women are tied, we need to put an
order over them to understand who to propose first.

Linearizations. We aim to define linearizations where finding the
next best solution (that is, applying operation Next) is tractable and
where solutions which are less distant from optimal ones appear
earlier in the linearized order. We define three linearizations L1,
L2, and L3 which break ties by taking into account the distance of
a solution preference from the optimal preference (L1), or also the
minimum number of preference values for parts of the solutions to
be changed to make the solution optimal (L2), or also the amount
of change required (L3). Among the solutions which are still in a
tie, we put first those that are lexicographically earlier, according
to an ordering over variables and domain values.

We will now see how to perform operation Next on such three
linearizations. We will call these operations Nexti, for Li = 1,2,3.
From results in [2], we know that performing Next1 can be accom-
plished in polynomial time when we have a tree-like fuzzy CSPs.
To perform Next2 and Next3 for tree-shaped fuzzy CSPs, when we
already have the top k−1 solutions, we find the top k solution ac-
cording L2 and L3 by computing the top k solutions of a set of
weighted CSPs with a bounded tree-width. This is polynomial [3].

Our algorithm, which we call KCheapest, works, with suitable
variants, for both L2 and L3. The input is a tree-shaped fuzzy CSP
P, an integer k, and a linearization L (either L2 or L3). The out-
put is a set of top k solutions of P according to the linearization.
KCheapest returns the top k solutions of P according to L2 and L3
in polynomial time, when k is polynomial in f and d. As stated
before, from [6] we know that on average only 2% of all propos-
als are made, so the idea is to call KCheapest with k = 2% of the
maximum number of proposals and cache the returned set of solu-
tions. Only when all cached solutions have already been returned,
we need to call KCheapest again.

If we run the GS algorithm on any of the linearizations we de-
fined, by definition we obtain a matching which is stable w.r.t.
this linearization. When we use soft constraints with a bounded
tree-width for the men, each proposal in the GS algorithm takes
O(poly( f )) time, where f is the number of variables and each
Compare operation takes O(poly(m)), where m is the number of
soft constraints. So, overall, the GS algorithm may need up to
O(n2× poly( f )× poly(m)) time, although the number of proposals
have been shown to be much lower in practice [6].
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