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1. INTRODUCTION
This paper is motivated by optimization applications in-

volving multiple stakeholders. Examples of such applica-
tions are found in large-scale restoration of interdependent
infrastructures after significant disruptions (e.g.,[1, 2]), hu-
manitarian logistics over multiple states or regions (e.g., [3]),
supply chain coordination (e.g., [4]) and integrated logistics
involving, say, a port, inland terminals, and railway and
truck operators.

Consider, for instance, the restoration of the power system
and the telecommunication network after a major disaster.
As explained in [3], there are one-way dependencies between
the power system and the telecommunication network. This
means, for instance, that some power lines must be restored
before some part of the telecommunication network can be-
come available. It is possible to use centralized mechanisms
for restoring the system as a whole. However, in practice,
it is often the case that these restorations are performed
by different agencies with independent objectives and self-
ish behavior may have a strong impact on the social welfare.
It is thus important to study whether it is possible to find
high-quality outcome to these problems in decentralized set-
tings when the stakeholders proceed independently and do
not share complete information about their costs.

This paper aims at taking a first step in this direction.
We propose a class of one-way games that abstracts some
of the salient features of these applications. In this first ap-
proach, we restrict the attention to one-way dependencies.
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These dependencies capture a significant class of applica-
tions in infrastructure restoration, supply-chain coordina-
tion, and integrated logistics. Our goal is to find ways of
incentivizing players to cooperate to achieve a better social
welfare outcome.

2. ONE-WAY GAMES
A one-way game features 2 players A and B. Each player

i ∈ A,B has a public strategy set Si and we write S =
SA × SB to denote the set of joint strategies profiles. Each
player also has a private payoff function ui : S → R+.
The payoff uA(sA, sB) = uA(sA) of player A is determined
only by its own strategy, whereas the payoff uB(sB , sA) for
player B is determined by the strategies selected by both
players. Notice that the payoff value uB(si, sj) for player B
is known for any strategy si, sj ∈ S. Player B however has
no information about the strategy that player A will select.

A key feature of one-way games is that the payoff of player
A is independent of player B, while B must act according
to what player A chooses to do. Thus, player B is at a
disadvantage with respect to player A. This fact entails the
following lemma.

Lemma 2.1. There always exists a pure Nash equilibrium
in one-way games. Furthermore, Player A has its optimal
payoff in every Nash Equilibrium.

Our motivating applications aim at optimizing a global wel-
fare function SW (sA, sB) = uA(sA) + uB(sA, sB). Since
player A does not depend on B′s action, her strategy may
induce a bad outcome for player B even when B has a much
greater payoff. We quantify the quality of Nash equilibria
with the price of anarchy (PoA).

Lemma 2.2. The price of anarchy for one-way games is

maxs∈S uB(s)

maxs∈S uA(s)
≤ PoA ≤ 1 +

maxs∈S uB(s)

maxs∈S uA(s)
,

The price of anarchy can thus be arbitrarily large. When it is
large enough, Lemma 2.2 indicates that in this case, player
B has a strong bargaining power to monetary incentivize
player A to cooperate. This paper explores this possibility.

3. THE VCG MECHANISM
Since we are interested in solving a welfare maximization

problem with private values, it is useful to determine the
properties of the VCG mechanism in this context. VCG
is a direct revelation mechanism that truthfully implements
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the welfare maximizing social choice function but may not
be weakly budget-balanced. Where weakly budget-balanced
means that there are no net transfers into the system. Ad-
ditionally, the mechanism is ex-post individually rational,
meaning that no individual wishes to walk away from a
mechanism after all information has been revealed.

To quantify how unbalanced is the VCG mechanism, con-
sider the social cost of the VCG mechanism defined as fol-
lows.

Definition 3.1. The social cost (SC) of the VCG mecha-
nism is the ratio between the optimal social outcome without
and with the payments of the mechanism.

The payments are always negative making the social cost
strictly greater than 1. Furthermore, using the explicit value

of the payments yields SC =
maxs∈S SW (s)

maxsA∈SA
uA(sA)

.

Lemma 3.2. The social cost of implementing the optimal
social outcome can be at least as large as the price of anar-
chy.

4. BUDGET-BALANCED MECHANISMS
An interesting starting point is the recognition that, when

player B has a better payoff than A, player A may let player
B play her optimal strategy in exchange for money. The
resulting outcome can be viewed as swapping the roles of
both players, i.e., player B chooses her optimal strategy and
A plays her best response to B’s strategy. This observation
leads to the following lemma.

Lemma 4.1. Consider s′ = arg maxs∈S max (uA(s), uB(s)) .
In the one-way game, strategy s′ has a price of anarchy of
2.

Lemma 4.1 gives us hope for the design of an budget-balanced
mechanism that has a constant price of anarchy. Indeed, a
simple and distributed implementation of Lemma 4.1 would
ask each player to reveal their maximal payoff value and then
choose the best strategy to be implemented. If the strategy
proposed by player B should be implemented, then player
A must receive a monetary compensation for deviating from
her maximal strategy.

Lemma 4.2. There is no ex-post individual rational, budget-
balanced mechanism that implements strategy s′ from Lemma
4.1.

This impossibility result comes from the fact that both
players have a positive outside option. We have found a
counter-example showing that it is not possible to imple-
ment strategy s′ without violating the individual rational
constraint.

5. SINGLE-OFFER MECHANISM
We now consider a bargaining game under a Bayesian set-

ting where each player has private utilities and a belief about
the other player utilities. We assume that the default strat-
egy s∗A ∈ arg maxs∈SA uA(s) of player A (i.e. the action A
would choose if no monetary incentive is given), is publicly
known. This single-offer mechanism is defined as follows:

1. Player B determines s′A ∈ SA and s′B(s′A) ∈ SB such
that s′B(s′A) ∈ arg maxs∈S uB(s), i.e., the strategy that
maximizes her utility.

2. PlayerB computes s∗B(s∗A) ∈ arg maxsB∈SB uB(s∗A, sB),
i.e., the best response to player A’s default strategy.

3. Player B proposes a monetary value of γ · ∆B with
∆B = uB(s′B(s′A)) − uB(s∗B(s∗A)) and γ ∈ R[0,1] to
player A if she accepts to play strategy s′A rather than
her default strategy s∗A.

4. Player A decides whether to accept the offer.

5. If player A accepts the offer, the game is played with
strategy (s′A, s

′
B); Otherwise the outcome of the game

is (s∗A, s
∗
B(s∗A)).

It worth to observe that a broker is required in this mech-
anism to ensure that the strategy (s∗A, s

∗
B(s∗A)) is imple-

mented, if player A rejects the unique offer.

Proposition 5.1. Player A accepts the offer whenever
γ ·∆B ≥ ∆A, where ∆A = uA(s∗A)− uA(s′A).

Let F (·): F (x) ∈ [0, 1] is the probability that ∆A ≤ x and
thus F (γ ·∆B) is the probability that player A accepts the
offer γ ·∆B . F (x) is assume to be public.

We have designed a mechanism that satisfies individual
rationality by construction. Player B never offers more than
∆B and its payoff is never worse than the default strategy
s∗B(s∗A).

Lemma 5.2. Player’s B expected utility is maximized when
she offers γ∗ ·∆B, where γ∗ = arg maxγ F (γ ·∆B) · (1− γ).

We now derive the induced price of anarchy for the single-
offer mechanism.

Lemma 5.3. Let PoAA(γ) and PoAR(γ) denote the in-
duced price of anarchy if player A accepts and rejects re-
spectively. Then, PoAA(γ) = 1 + γ and PoAR(γ) = 1 + 1

γ
.

We are ready to show the main property of this mechanism.

Theorem 5.4. The Bayes-Nash price of anarchy is

γ∗ + 1

γ∗
(1− F (γ∗ ·∆B)(1− γ∗)) .

For example, if F = U(0,∆B), then γ∗ = 1
2

and thus the
expected price of anarchy is 2.25.
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