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ABSTRACT
The majority of work in judgment aggregation is devoted
to the study of impossibility results. However the (social)
dependencies that may exist between the voters has received
less attention. In this extended abstract we use the degree
centrality measure from social network analysis and obtain
a correspondence between the average voter rule and this
measure, and show that approach can lead to more resolute
outcomes in the voting process.
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Keywords
Artificial social systems, Social and organisational structure,
Collective decision making

1. JUDGMENT AGGREGATION
The problem of judgment aggregation investigates how to
aggregate individual judgments on logically related proposi-
tions to a group judgment on these propositions [4]. Many
judgment aggregation rules have been proposed in the liter-
ature, however all share the concern with the general prob-
lem of selecting outputs that are consistent with a set of
constraints and compatible with individual judgments [3].

In this work, we use the recently introduced framework
of binary aggregation with integrity constraints [2], where
a judgment aggregation problem consists of a group of n
agents N which have to jointly decide for which m issues
I to choose ”yes” and for which to choose ”no”. A ballot
B ∈ {0, 1}m associates either 0 (“no”) or 1 (“yes”) to each
issue in I. In general, not every possible ballot might be a
feasible or rational due to a set of integrity constraints IC
on the issues in the form of logical formulas. A profile is a
vector of rational ballots B = (B1, . . . , Bn) ∈ Mod(IC)n,
containing one ballot for each agent. A voting rule is a
function that maps each profile B to a set of ballots. One
of the most well-known voting rules is the (weak) majority
rule, which accepts an issue if a weak majority of the agents
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accept it:

Maj(B)j = 1 iff |{i ∈ N | Bij = 1}| ≥
⌈n

2

⌉
.

Grandi and Pigozzi propose in [3] the average voter rule
(AVR), which selects the voter with the shortest Hamming
distance to the voting profile:

AV R(B) = argmin
{Bi|i∈N}

∑
i′∈N

H(Bi, Bi′).

Example 1. Suppose a judgment aggregation scenario con-
sisting of six agents (a, b, c, d, e, f) voting on an agenda com-
posed of four issues (p, q, r, z). The agenda is subject to the
following integrity constraint: IC = (p ∧ q ∧ r)⇔ z.

Issue: p q r z
a 0 1 1 0
b 1 0 0 0
c 1 1 1 1
d 1 0 0 0
e 1 0 1 0
f 0 0 1 0

Maj 1 0 1 0
MRV 1 0 1 0

2. SOCIAL NETWORK ANALYSIS
Social network analysis (SNA) studies social relationships

in terms of graph theory, consisting of vertices (representing
individual actors) and edges (which represent relationships
between the individuals). The centrality of vertices, iden-
tifying which vertices are more “central” than others, has
been a key issue in network analysis. Freeman [1] originally
formalised three different measures of vertex centrality: de-
gree, closeness, and betweenness. We restrict our analysis
to the degree centrality, which measures the local involve-
ment of the vertex in the network by counting the number
of vertices it is connected to. We consider a recent proposal
[5] that uses a tuning parameter α to control the relative
importance of number of edges compared to the weights on
the edges. The degree centrality for a vertex i is computed
as follows:

CWα
D (i) = ki ×

(
si
ki

)α
= k

(1−α)
i × sαi (1)

where W is the weight matrix of graph, α is a positive tuning
parameter, ki is the size of the neighbourhood of vertex i
and si the sum of the weights of the incident edges. If α
is between 0 and 1, then the size of the neighbourhood is
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prioritised, whereas if it is set above 1, then the sum of the
weights is.

Considering again Example 1, we can build a voter-to-
voter matrix V by counting identical votes between voters
(Figure 1a). Vij denotes the number of times that both
voters i and j voted “yes” or they both voted “no” for the
same issue.

The voter-to-voter matrix V can be represented as a graph
by letting the voters be the nodes and the value in each cell
be the weight of the edge connecting the two nodes consti-
tuting the coordinate of the cell (Figure 1b). We can see
in the voter-to-voter graph that the strongest connection is
between agents b and d, representing the fact that their bal-
lots are equivalent. Differently, agent c can be considered an
outlier due to its weak connections with the other agents.

a b c d e f
a 4 1 2 1 2 3
b 1 4 1 4 3 2
c 2 1 4 1 2 1
d 1 4 1 4 3 2
e 2 3 2 3 4 3
f 3 2 1 2 3 4

(a) Voter-to-voter (V)
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(b) Voter graph (GV )

Figure 1: Relations among voters

3. ANALYSIS
There is an equivalence between the Hamming distance

between two voters and the weight of the edge that connects
the two voters in the corresponding voting graph, namely
that the Hamming distance between two ballots Bi and Bj
is equal to m− Vij in the corresponding voter graph V , i.e.
H(Bi, Bj) = m− Vij .

From this observation we have that the Hamming distance
between a ballot Bi and a profile B is equal to mn − si,
where si is the sum of the weights of the incident edges
of vertex i in the voter graph constructed from B, shortly:∑
j∈N H(Bi, Bj) = mn− si.
Since the average voter rule selects the voter that min-

imises the distance to the profile, it follows that AVR se-
lects the voters corresponding to the maximum total weight
vertices in the voter graph, i.e.: AV R(B) = argmaxi∈N si.
Thus, the average voter rule corresponds to the node with
the highest degree centrality when the tuning parameter
α = 1:

Theorem 1. The average voter rule selects those indi-
vidual ballots that have the maximal degree centrality value
when α = 1.

AV R(B) = argmax
i∈N

CWα
D (i), when α = 1.

Now that we have obtained a correspondence for α = 1,
we continue by varying this parameter. Consider the voting
scenario in Figure 2a and the corresponding voter graph in
Figure 2b. The outcome of the degree centrality for varying
α are depicted in Figure 3. As we showed in Theorem 1,
for α = 1 the degree centrality measure corresponds to the
si measure, so node a, c and d are all chosen as the most
representative voter. When α < 1 the amount of connections
play are larger role and only c and d are chosen as the winner,

1 2 3 4 5
a 0 1 1 1 1
b 1 0 0 0 0
c 0 1 1 0 0
d 0 0 0 1 1

Maj: 0 1 1 1 1
AVR: 0 1 1 1 1

0 1 1 0 0
0 0 0 1 1

(a) Profile

2 2

1

3 3

b

a

c d

(b) Voter graph

Figure 2: Judgment aggregation example

while for α > 1 the weight of the edges play are larger role
and a is picked as the winner. This example shows that by
exploiting the topology of the graph, we are able to obtain
a more fine-grained outcome than the average voter rule.

Vertex si CWα
D when α =

0 0.5 1 1.5

a 4 2 2.5 4 6.3

b 2 2 2 2 2

c 4 3 2.9 4 5.5

d 4 3 2.9 4 5.5

Figure 3: Degree centrality scores when different values of
α are used.

We plan to further investigate how the tuning parameter α
influences the resoluteness of the results and to identify the
properties of the new voting rules. Additionally, we deem
interesting to investigate whether the issue-to-issue matrix,
which represents correlation between issues instead of voters,
can be used to identify additional voting rules. Finally, we
are planning to analyse the other two centrality measures,
closeness and betweenness, using empirical analysis on large
networks, which is a typical SNA scenario.
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