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ABSTRACT
Planning for ad hoc teamwork is challenging because it involves in-
dividual agents collaborating with others without any prior coordi-
nation. However, individual decision making in multiagent settings
faces the task of having to reason about other agents’ actions, which
in turn involves reasoning about others. An established approxi-
mation that operationalizes this approach is to bound the infinite
nesting from below by introducing level 0 models, which results in
suboptimal team solutions in cooperative settings. We demonstrate
this limitation and mitigate it by integrating learning into planning.
The augmented framework is applied to ad hoc teamwork.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents, Mul-
tiagent systems
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1. INTRODUCTION
Ad hoc teamwork involves a team of agents coming together to

cooperate without any prior coordination or communication pro-
tocols [3]. The preclusion of prior commonality makes planning
in ad hoc settings challenging thereby making frameworks such as
DEC-POMDPs unsuitable for ad hoc teamwork. Other approaches
such as online planning in ad hoc teams (OPAT) [3] assume per-
fect observability of physical states and others’ actions, which often
may not apply. Our focus is on how an inividual agent should be-
have online as an ad hoc teammate in partially observable settings
with minimal prior assumptions. Frameworks such as interactive
dynamic influence diagrams (I-DIDs) [1] are recognized to be suit-
able for ad hoc teamwork but their complexity is challenging.

While recent advances on model equivalence [4] allow frame-
works such as I-DIDs to scale, another significant challenge that
merits attention is due to the finitely-nested modeling used in these
frameworks, which assumes the presence of level 0 models that do
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not explicitly reason about others. By augmenting I-DIDs by ad-
ditionally attributing a new type of level 0 model that utilizes rein-
forcement learning (RL), we show a principled emergence of team
behavior for the first time. We demonstrate the applicability of the
augmented I-DIDs to ad hoc settings and show its effectiveness for
varying types of teammates. We experiment with multiple coopera-
tive domains and perform a baseline comparison with a generalized
version of OPAT [3] that accounts for the partial observability.

2. TEAMWORK IN INTERACTIVE DIDS

Figure 1: Multiagent
grid domain. Numbers
denote rewards.

Teamwork involves agents collabo-
rating to optimize the team reward;
ad hoc teamwork imposes no pre-
coordination. We begin by showing that
the finitely-nested hierarchy in I-DID
(and I-POMDP) does not facilitate team-
work. Figure 1 shows a setting of two
agents, i and j, in a grid meeting prob-
lem. If each agent deliberates at its own
level, agent i modeled at level 0 chooses
to move left while a level 0 agent j
chooses to move down. Each agent obtains a reward of 15 and
the team gets 30. Agent i modeled at level 1 and modeling j at
level 0 thinks that j will move down, and its own best response to
predicted j’s behavior is to move left. Analogously, a level 1 agent
j would choose to move down. A level 2 agent i will predict that
a level 1 j moves down as mentioned previously, due to which it
decides to move left. Analogously, a level 2 agent j continues to
decide to move down. We may apply this reasoning inductively to
conclude that finite level l ≥ 0 agents i and j would move left and
down, respectively, earning a joint reward of 30. However, the op-
timal team behavior in this setting is for i to move right and j to
move up obtaining a team reward of 40. Clearly, these finite hier-
archical systems preclude the agents’ optimal teamwork due to the
bounded reasoning introduced by the lowest level (level 0) agents.

Notice that an offline specification of level 0 models in cooper-
ative settings is necessarily incomplete. This is because the true
benefit of cooperative actions often hinges on others performing
supporting actions, which by themselves may not be highly reward-
ing to the agent. Thus, despite solving the level 0 models optimally,
the agent may not reliably engage in optimal team behavior.

While it is difficult to a priori discern the benefit of moving up
for agent j in Fig. 1, it could be experienced by the agent. Specifi-
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cally, it may explore moving in different directions including mov-
ing up and learn about its benefit from the ensuing, possibly indi-
rect, team reward. Subsequently, we may expect an agent to learn
policies that are consistent with optimal teammate behavior be-
cause the corresponding actions provide large reinforcements. For
example, given that agent i moves right in Fig. 1, j may choose to
move up in its exploration, and thereby receive a large reinforcing
reward. This observation motivates formulating level 0 models that
utilize RL to generate the predicted policy for the modeled agent.
Essentially, we expect that RL with its explorations would com-
pensate for the lack of teamwork caused by bounded reasoning in
finitely-nested I-DIDs.

We therefore augment the level 0 model space, M′
j,0, by addi-

tionally attributing a new type of level 0 model to the other agent
j:m′

j,0 = 〈bj,0, θ̂′j〉, where bj,0 is j’s belief and θ̂′j,0 is the frame of
the learning model. The frame, θ̂′j,0, includes the learning rate, α;
seed policy, π′

j , of planning horizon, T , with a fair amount of ex-
ploration; and the chance and utility nodes of the DID along with a
candidate policy of agent i, which could be an arbitrary policy from
i’s policy space, Πi, as agent i’s actual behavior is not known.

Level 0 agent j learns its policy while agent i’s actions are a part
of the environment (hidden). As j’s model space is inclusive of i’s
policy space, it is intractable to learn a policy for all i’s policies.
Considering that few of i’s policies are actually collaborative, we
formulate a principled way to reduce the full space to those poli-
cies of i that could be collaborative. We may further reduce agent
j’s policy space by keeping top-K policies of j in terms of their
expected utilities. Agent j’s policy space will be additionally re-
duced because behaviorally equivalent models – learning and other
models with identical solutions – will be clustered [4].

3. EXPERIMENTAL RESULTS
We adapt Perkin’s Monte Carlo Exploring Starts for POMDPs

(MCESP) [2], which learn good policies in fewer iterations while
making no prior assumptions about the agent’s models to perform
the RL. We empirically evaluate the performance of Aug. I-DIDs in
three well-known cooperative domains: 3× 3 grid meeting (Grid),
box-pushing (BP), and multi-access broadcast channel (MABC).

In the first set of experiments, we show that Aug. I-DIDs facil-
itate team behavior, which was traditionally implausible (see Ta-
ble 1). We observe that Aug. I-DID’s solutions approach the glob-
ally optimal team behavior as generated by GMAA*-ICE. We ob-
serve that the larger weights on the learned policies lead to better
quality i’s policies. The small gap from the optimal DEC-POMDP
value is due to the uncertainty over different models of j. Further-
more, Aug. I-DID generates the optimal team behavior identical to
that of GMAA*-ICE when i’s belief places probability 1 on the true
model of j, as in Dec-POMDPs.

Next, we apply the Aug. I-DIDs in an ad hoc setting similar to
the one used by Wu et al. [3] (Table 2) involving different teammate
types including teammate policies that may not be most effective
in advancing the joint goal. Aug. I-DID’s better performance is in
part due to the sophisticated belief update that gradually increases
the probability on the true model if it is present in j’s model space.
Consequently, they allow better adaptability than OPAT which fo-
cuses on a single optimal behavior of teammates during planning.
On the other hand, OPAT takes significantly less time because it
approximates the problem by solving a series of stage games mod-
eling the other agent using a single type. Further experiments on
the robustness of Aug. I-DIDs in dynamic settings showed that
agent i obtained significantly better average rewards compared to
OPAT for the setting where the other agent is of type predefined and

Table 1: Performance comparison between the trad. I-DID, aug. I-
DID, and GMAA*-ICE (shown only for largest horizon)

Aug. I-DID Trad I-DID
Domain K Uniform Diverse Uniform

Grid 100 37.15 53.26

(T=4) 64 35.33 53.26 21.55
32 35.33 53.26

Dec-POMDP(GMAA*-ICE): 58.75

BP 32 73.45 76.51

(T=3) 16 73.45 76.51 4.75
8 71.36 76.51

Dec-POMDP(GMAA*-ICE): 85.18

MABC 64 4.08 4.16

(T=5) 32 3.99 4.16 3.29
16 3.99 4.16

Dec-POMDP(GMAA*-ICE): 4.79

Table 2: Baseline Comparison with OPAT with different types of
teammates. Each datapoint is the average of 10 runs.

Ad Hoc Teammate OPAT Aug. IDID
Grid T=20, look-ahead=3

Random 12.25 ± 1.26 14.2 ± 0.84
Predefined 11.7 ± 1.63 16.85 ± 1.35
Optimal 28.35 ± 2.4 27.96 ± 1.92

BP T=20, look-ahead=3
Random 29.26 ± 2.17 36.15 ± 1.95

Predefined 41.1 ± 1.55 54.43 ± 3.38
Optimal 52.11 ± 0.48 59.2 ± 1.55

MABC T=20, look-ahead=3
Random 9.68 ± 1.37 12.13 ± 1.08

Predefined 12.8 ± 0.65 13.22 ± 0.21
Optimal 16.64 ± 0.28 15.97 ± 1.31

after 15 steps is substituted by an optimal type for the remaining 15
steps in the MABC domain.

4. CONCLUSION
Self-interested individual decision makers face hierarchical be-

lief systems in their multiagent planning. We explicated a negative
consequence of bounding the hierarchy: the agent may not behave
as an optimal teammate. By integrating learning in planning, we
show the emergence of team behavior. This facilitates a natural ap-
plication to ad hoc teamwork with no pre-coordination for which
they are well suited. By allowing models formalized as I-DIDs or
DIDs to vary in the beliefs and frames, we considered an exhaus-
tive and general space of models during planning. Aug. I-DIDs
provide a bridge between multiagent planning frameworks such as
DEC-POMDPs and joint learning for cooperative domains.
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