
A Statistical Model Checker for Situation Calculus Based
Multi-Agent Models

(Extended Abstract)
Christian Kroiß

Institute for Informatics
Ludwig-Maximilians-Universität München

Munich, Germany
kroiss@pst.ifi.lmu.de

ABSTRACT
In this paper we introduce a new approach for multi-agent
simulation and statistical model checking that combines the
well-established situation calculus with a first order version
of bounded linear time logic (BLTL). This creates a fully
integrated solution for specifying system behavior and re-
quirements within the same logical framework. We realized
the approach in an extensible tool that combines the bene-
fits of constraint logic programming with the versatility of
Python and its ecosystem. First experiments show that the
approach is applicable to a wide range of problems and that
altogether a more flexible modeling-verification workflow is
achieved than in most existing solutions.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; D.2.4 [Software Engineering]: Software/Pro-
gram Verification—Model checking ; D.1.6 [Programming
Techniques]: Logic Programming

Keywords
Statistical Model Checking; Agent-Based Simulation; Multi-
Agent Systems; Situation Calculus

1. INTRODUCTION
Statistical model checking (SMC) [1] can be seen as a

variant of simulation where statistical hypothesis tests are
applied to recorded execution traces. The goal is to as-
sure that certain properties are violated only with a given
maximal probability. The well-known state-space explosion
problem of exact model checking is avoided in SMC while
still allowing to specify the evaluated properties in variants
of temporal logics, e.g. LTL [2]. However, in existing SMC
solutions there is usually a trade-off between expressiveness
of the property specification language and the versatility of
the system model: either the SMC engine works on traces
recorded from a black-box system, in which case a problem-
specific interpretation of the traces has to be specified; or

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the system model is defined in a modeling language that
provides direct access to the simulated system’s state. In
the latter case, however, the nature of the used simulation
engine often enforces unwanted abstractions, e.g. due to
lacking support for more complex data processing facilities.

In order to achieve a more direct integration, we propose
to base the system model on the situation calculus [3], a well-
known first-order logic language for describing dynamic sys-
tems. We combine this with a specialized first-order version
of LTL that allows direct reasoning about all facets of the
system state. The approach is realized by a Python-based
simulation engine that connects to the ECLiPSe constraint
logic programming environment [4] for property evaluation
and for calculating system state updates. Agent control pro-
cesses, as well as probability distributions for stochastic ac-
tions and events, are defined using an extensible Python
framework. Thus, the modeler can profit from the advan-
tages of a consistent logical model and at the same time use
the full Python ecosystem, e.g. for advanced mathematical.
An overview about this architecture is given in Figure 1.

2. THE MODELING FRAMEWORK
Every simulation model in our approach is at its core

based on a situation calculus axiomatization of the agents
and their environment. Concretely, the model contains a
precondition axiom for each action, as well as a successor
state axiom (SSA) for each fluent (i.e. situation-dependent
feature). Each SSA defines an update rule for the fluent’s
value as a function of the current situation and the per-
formed action. In practice, all axioms are defined using the
ECLiPSe Prolog dialect. However, we present an example of
a SSA in a more compact mathematical notation:

holding(r, i,do(a, s)) ≡ a = grab(r, i) ∨
(holding(r, i, s) ∧ a 6= drop(r, i))

Properties

 Invariants

 Achieve Goals

 Probability distributions

 Process definitions

 Scenario Configuration

Agent Process Interpreter

Situation Calculus Engine

Statistics Engine

Property Evaluator

Situation Calculus Domain Axiomatization

P
Y

T
H

O
N

E
C

L
i P

S
e

LTL

Figure 1: Tool Architecture

1567



This axiom simply says that a robot r is holding an item
after it has grabbed it and that it keeps holding it until the
item is dropped. The last argument do(a, s) on the left side
denotes the situation that is reached after the action a is
performed in situation s.

Given an axiomatization along these lines, the simulation
engine uses progression [3, ch. 9] to calculate the new world
state after executing actions yielded by the agents in each
simulation step. In this model, time is represented as a reg-
ular fluent (time) that is increased by an action (tick) which
is implicitly performed at the end of each step. Of course,
the modeler has to specify control procedures for all agents in
the system. This is done with a Python API that provides
all common procedural constructs like while, if, variable
assignments, or procedure calls. Within the procedures the
current values of all fluents are accessible, and calculations
may be performed both by Python and ECLiPSe (Prolog)
functions. A simple agent procedure might look like this:

1 Procedure("carryAway" ,[], [
2 Select("reachable",[SELF , ("i","item")]),
3 Act("grab", [SELF , Var("i")]),
4 While("xpos(self) < 100", [],
5 Act("move_right", [SELF])
6 ), Act("drop", [SELF , Var("i")])])

The procedure carryAway first assigns a value for variable i
by selecting an arbitrary item that makes the Prolog pred-
icate reachable(SELF, i) true. Then the action grab is
executed, followed by a loop that executes move_right un-
til the Python expression xpos(self) < 100 becomes false.
Once the robot has reached its target, it drops the item.

With the situation calculus model at hands, one can define
properties using a first-order logic version of bounded LTL
(i.e. LTL with upper time bounds attached to the temporal
operators). An example in the context of the robot scenario
from above could be the following formula (like before using
a mathematical notation instead of the concrete syntax):

∀r ∈R.∀i ∈ I. occur(grab(r, i))→
holding(r, i)U50(xpos(r) ≥ 100 ∧
¬(∃r′ ∈ R. r′ 6= r ∧ xpos(r′) ≥ 100))

Here R and I denote the domains of robots and items, re-
spectively, and U50 is the LTL “until” operator, bounded to
a limit of 50 time steps. Hence, the property asserts that
whenever a robot r grabs an item i, r will eventually arrive
at a region defined by x ≥ 100 within at most 50 time steps.
It also requires that when r arrives, there will not be an-
other robot in the target region, and until r arrives it keeps
holding the item. Even in this simple formula, it becomes
obvious how useful the first-order variant of LTL is in the
context of multi-agent systems. In particular, it allows to
explicitly distinguish individual agents and entities and to
reason about relations between them.

Since we restrict the system to finite domains for each en-
tity sort (like robot or item) and all temporal operators are
bounded, our property evaluator is in any case able to verify
the satisfaction of formulas like the one above in finite time
during simulation. If the model contains stochastic actions
or events then the number of property violations becomes a
binomially distributed random variable. One can now ap-
ply well-known statistical methods, either to estimate the
probability p of a property violation or to test an hypothesis

like H0 : p ≤ p0. For the latter task, we integrated the se-
quential probability ratio test (SPRT) by A. Wald [5]. This
test allows performing a hypothesis test without a prede-
fined sample length. Instead the engine decides after each
experiment (i.e. simulation run) whether enough data has
been collected or if additional simulation runs are necessary
to satisfy the chosen error probability bounds.

3. EVALUATION
The tool behind our approach is available at [6]. So far

we have been working with several smaller models that were
designed specifically for testing the tool and for exploring
the expressiveness of the modeling languages. Besides that,
we are currently working on a case study of the EU project
ASCENS. In the main scenario, which is described in [7],
parking-/charging places for electric vehicles are assigned
using a distributed optimization scheme. We were able to
create a simulation model that contains a relatively detailed
representation of the vehicles’ navigation on a graph-based
map and also of the message-based communication protocols
between vehicles and control stations. Here the value of the
flexible language integration became very obvious. Among
others, it permitted us to leverage Prolog’s list processing
and term matching capabilities to model message passing
while at the same time using a Python graph library for
route calculation. Furthermore, the fact that basically all
features of the system are directly accessible in property for-
mulas notably facilitates an agile iterative modeling process.
In the next step our approach will be applied to analyze the
model with respect to aspects like communication failure
resilience and adaptivity. Due to space restrictions, we are
not able to present further results here. However, the expe-
riences so far are very promising and we plan to publish a
detailed treatment soon.

4. ACKNOWLEDGEMENTS
This work has been partially sponsored by the EU project

ASCENS, FP7 257414.

5. REFERENCES
[1] A. Legay, B. Delahaye, and S. Bensalem, “Statistical

model checking: An overview,” in Runtime Verification,
pp. 122–135, Springer, 2010.

[2] A. Pnueli, “The temporal logic of programs,” in
Foundations of Computer Science, SFCS ’77,
(Washington, DC, USA), pp. 46–57, IEEE Computer
Society, 1977.

[3] R. Reiter, Knowledge in action: logical foundations for
specifying and implementing dynamical systems. MIT
press, 2001.

[4] “The ECLiPSe Constraint Programming System.”
http://www.eclipseclp.org.

[5] A. Wald et al., “Sequential tests of statistical
hypotheses,” Annals of Mathematical Statistics, vol. 16,
no. 2, pp. 117–186, 1945.

[6] http://www.salmatoolkit.org.

[7] T. Bures et al., “A life cycle for the development of
autonomic systems: The e-mobility showcase,” in
Proceedings of the 3rd Workshop on Challenges for
Achieving Self-Awareness in Autonomic Systems,
Philadelphia, USA, 2013.

1568


	Introduction
	The Modeling Framework
	Evaluation
	Acknowledgements
	References



