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ABSTRACT
Electric Vehicles (EVs) and their integration in the smart
grid are challenges that sustainable societies have to tackle.
Large scale uncoordinated EV charging increases peak de-
mand and creates the need for extra grid infrastructure to
be covered effectively, which is a costly solution. We propose
a decentralized charging strategy for EV customers that of-
fers savings for the individual adopters on their electricity
bill and at the same time peak demand reduction, alleviating
smart grid from critical strains. We implement our charg-
ing strategy through learning agents that act on behalf of
EV owners and examine the effect of our strategy under the
prism of various market conditions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
Agents
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1. INTRODUCTION
Electric Vehicles (EVs) are increasingly gaining popular-

ity as means of individual commuting [3]. This vast adop-
tion is attributed to the rising fuel prices that discourages
the use of internal combustion engine vehicles (according to
EU reports we had a quintupling of oil prices between 2002
and 2010 [5]). EVs make commuters independent from fuel
prices, but increase their dependency on electricity prices
and involves them in the Smart Grid energy exchange pro-
cesses. EVs apart from transportation purposes may serve
as Balancing Responsible Parties (BRPs) within Smart Grid.
They can use part of their battery capacity for storing en-
ergy during low demand hours and feeding it back to the
Grid during peak hours.

However, if they are not controlled properly, they can be
disastrous for smart grid’s stability, since EV charging cre-
ates high peaks on the demand, overloading the grid. To
overcome this bottleneck we propose a distributed Smart
Charging strategy implemented on the individual customer’s
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side through a customer agent. This agent accounts for each
individual customer’s preferences and schedules EV charging
maximizing the derived utility. We observe that by applying
this strategy on the market the EV owners’ comfort is not
violated and the peaks in the demand are shifted towards
lower demand periods. Meanwhile, the energy prices are re-
duced because of this peak shaving, yielding to savings for
the individuals.

2. MODEL DESCRIPTION
Each customer is represented by an agent that implements

the EV charging strategy and calculates the charging vec-
tor based on demographic information, driving profiles and
household consumption of the particular individual. Firstly,
the agent determines the driving profile of each individual
customer. It calculates the daily driving needs (driving pro-
file) taking as inputs the gender, profession, working type
and other demographic characteristics of the individuals.

Further, the customer agent defines the utility coming
from energy consumption. Assuming that the total con-
sumption consists of two components: household demand
(KWh) and EV charging demand (KWh) we have the to-
tal utility derived by the total consumption. We assume
quadratic utility forms as described in [1]. The quadratic
form is just an approximation for the energy consumption
utility and in the future we plan to collect real data to adjust
this utility. The variable ω is an important component of our
analysis and expresses the level of satisfaction obtained by
the user as a function of its energy consumption and varies
among customers. It can be interpreted as the customer’s
flexibility factor towards reaction to prices. The individual
welfare is the total utility obtained by the consumption for a
particular consumption unit reduced by the purchasing cost
of this unit. We assume real time pricing, and as an example
we use the European Energy Exchange (EEX) price-trends
over 24h horizons.

Having calculated the driving pattern, the agent uses rein-
forcement learning [6] to learn customers’ energy consump-
tion pattern. The customer agents’ decision problem is de-
scribed by a Markov Decision Process (MDP) where each
state represents the a discrete consumption value. The agent
can only transition to states that refer to later time slots
than the current time slot. After iterating over multiple
states the agent calculates to a ”learned consumption pat-
tern” for each individual.

Taking as inputs the learned consumption and the individ-
ual driving characteristics, the agent schedules EV charging
with respect to individual welfare maximization. For time
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horizon N = 24h the agent calculates the charging vector
from the individual welfare maximization problem. In other
words, derives the charging vector that ensures maximum
welfare for each point in this time horizon N. The maximiza-
tion constraints are summarized to the agent’s capability to
charge from the grid the maximum power allowed by the
customers’ charging level. The lowest amount the agent can
charge is zero.

3. EVALUATION
We evaluate the smart charging (SC) strategy in differ-

ent populations and examine its effect on peak demand and
price reduction, as a function of the EV ownership pene-
tration. The simulation environment consists of diverse EV
customer populations. The agent is trained on data provided
by University of California Irvine (UCI) machine learning
repository [2]. Basic assumption is that the EV customers
buy energy from the market to cover both their household
consumption and their EV charging demand.

First, we examine the effect of ω (customer’s flexibility
factor) on the individual demand. For higher ω values, the
satisfaction the customer gets from consuming one particu-
lar amount of energy becomes higher. We implement 5 sce-
narios that cover extreme and average cases (ω = 0.9, ω = 1,
ω = 10, ω = 100, ω = 1000). We observe that the case of
ω = 10, ω = 100, ω = 1000 show exactly the same behavior
because of the upper bound of the optimization. Therefore,
from now on we will use ω = 10 as the maximum value of ω
for this experimental setting. We also implement one mixed
scenario where all ω values are equally represented. We ob-
serve that higher value of ω, yields higher peak reduction,
with a maximum reduction of 40%.

Figure 1: Peak Reduction.

Figure 2 displays the demand shifts because of Smart
Charging for various ω. We observe that the highest ω value
gives the highest shift. An immediate result of the previous
figure is the price reduction. There is a general price re-
duction diffused in the market because of the demand shift
and peak reduction. In Figure 3 we show this reduction for
ω = 1, ω = 10 and for a mixed scenario with a maximum of
5% at 100% Smart Charging adoption, using EEX prices.

Finally, in Table 1 we show the peak reduction for vari-
ous smart charging flexibility parametrizations (within the
ω spectrum). We see that increasing customers’ flexibility
leads to increasing peak demand reduction, which is directly
related to the demand shifts as a function of flexibility.

4. CONCLUSIONS & FUTURE WORK
We presented a decentralized charging strategy focusing

on each individual EV owner. We showed that Smart Charg-

Figure 2: Demand Shifts over time for various ω.

Figure 3: Average Price Reduction.

Table 1: Energy Peak Reduction

(ω = 0.7) (ω = 0.9) (ω = 1) (ω = 10))

24% 33% 36% 39%

ing adoption leads to peak demand and price reduction on
the market and savings for the individuals. This implies an
emergent charging coordination based on preferences, with-
out the presence of an actual coordinator. In our future
work we plan to include the Vehicle-to-Grid discharging and
extend the scheduling horizon to increase realism. Finally,
we plan to integrate our strategy into Power TAC [4] for
more thorough validation.
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