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ABSTRACT
While most current work in POMDP planning focus on the
development of scalable approximate algorithms, existing
techniques often neglect performance guarantees and sac-
rifice solution quality to improve efficiency. In contrast, our
approach to optimizing POMDP controllers by probabilis-
tic inference and obtaining bounded on solution quality can
be summarized as follows: (1) re-formulate POMDP plan-
ning as a task of marginal-MAP “mix” (max-sum) inference
with respect to a new single-DBN generative model, (2) de-
fine a dual representation of the MMAP problem and de-
rive a Bayesian variational approximation framework with
an upper bound, (3) and design hybrid message-passing al-
gorithms to optimize a POMDP policy by approximate vari-
ational MMAP inference in the DBN generative model.
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1. INTRODUCTION
To address the scalability issues of solving increasingly

large planning problems, the community has been making
significant progress in developing scalable approximate plan-
ning algorithms. Unfortunately, solution quality is often
sacrificed for scalability and there is a lack of performance
guarantees. A promising approach to optimize POMDP con-
trollers consists of viewing planning as an inference prob-
lem with respect to a mixture of dynamic Bayesian net-
works (DBN s) [2]. This allows us to exploit the factored
structure of the problem and to leverage recent advances
in inference algorithms. Unfortunately, planning as infer-
ence does not change the fact that controller optimization
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is inherently non-convex. Hence, local optima are a major
issue and existing techniques for planning as inference do
not provide any performance guarantee. As a compelling
alternative, we develop a single-DBN generative model for
planning by marginal-MAP inference, which allows the ap-
plication of a broader range of inference techniques since
most inference techniques can be directly applied to a single
graphical model, but not a mixture of graphical models. We
also show how to adapt a Bayesian variational framework
to marginal-MAP inference with upper bounds on solution
quality.

2. PLANNING BY MMAP INFERENCE
2.1 Generative model for MMAP inference

We propose to solve POMDP problems by representing
policies explicitly as deterministic finite-state controllers (FSCs)
and to optimize controllers by marginal-MAP inference. A
controller encodes a policy with a set N of nodes n and a
set θ = π ∪ λ of categorical variables, where π = {πn}∀n
and λ = {λno}∀no. Here, πn ∈ A indicates the action to
be executed in node n and λno ∈ N indicates the succes-
sor node after receiving observation o in node n. Fig. 1
shows a dynamic Bayesian network that includes a con-
troller, parametrized by π and λ, for which policy opti-
mization is equivalent to marginal-MAP inference. Here,
St, At, Ot, Nt, Rt, Vt and Dt denote the state, action,
observation, node, reward, value and discount variables at
each time step t. Since this is a Bayesian network, all vari-
ables are random variables, including Rt, Vt and Dt. The
key is to think about the conditional distributions of those
variables as normalized versions of the immediate reward,
cumulative value and cumulative discount in [0, 1]. As pro-
posed by [2], Rt is a Boolean variable such that Pr(Rt =
true |St, At) = [R(St, At) − Rmin]/[Rmax − Rmin], where
Rmax = maxs,aR(s, a) and Rmin = mins,aR(s, a). Instead
of working with a mixture of DBN s as done by [2], we in-
troduce two additional Boolean variables Vt and Dt, which
allow the entire POMDP to be converted in a single DBN .
We set Pr(Vt |Vt−1, Rt, Dt) = ψ(Rt, Dt) + φ(Vt−1), where
ψ(Rt, Dt) = (1 − k) when Rt = Dt = true and 0 oth-
erwise, and φ(Vt−1) = k when Vt−1 = true and 0 oth-
erwise. We also set Pr(Dt = true |Dt−1) = k · γ when
Dt−1 = true and 0 otherwise. Here, γ ∈ [0, 1] is the dis-
count factor and k ∈ (0, 1) is a scaling factor that ensures
that probabilities are never greater than 1. At each step t,
Pr(Dt = true) is proportional to the cumulative discount
γt, and Pr(Vt = true) is proportional to the discounted sum

1611



of rewards earned so far. For a planning horizon of T time
steps, an optimal controller θ∗ can be obtained by com-
puting θ∗ = arg maxθ Pr(VT = true |θ). This optimization
corresponds to a marginal-MAP inference problem since we
are maximizing the decision variables θ while summing out
all random variables except for VT , which is set to “true”.

Figure 1: Single-DBN model for POMDP planning

2.2 Variational approximation framework
To opimize controllers by marginal-MAP inference, we ex-

tend previous approaches for variational sum-inference [3]
and marginal-MAP inference [1], which were developed for
pair-wise Markov random fields only. To our knowledge,
we are the first to derive the following Bayesian variational
framework and hybrid “mixed-product” message-passing al-
gorithms to (1) approximate marginal-MAP inference, and
(2) compute an upper bound of its solution for general fac-
tor graphs with cycles as it is required to optimize POMDP
controllers. A tractable approximation to marginal-MAP
inference consists of optimizing a truncated version of the
Bethe free energy while an upper bound can be obtained
by optimizing a truncated tree reweighted (TTRW) varia-
tional form. In both cases, message-passing algorithms can
be derived to perform the optimization.

Consider a factor graph representation of the DBN in
Fig. 1 where factors correspond to the conditional distri-
butions. Variables will be referred to by x and factors by f .
Let “A”be the set of factors that include only variables to be
summed out (i.e., random variables: St, At, Ot, Rt, Vt, Dt),
“B” the set of factors that include only variables to be maxi-
mized (i.e., decision variables: πn, λno), and“AB”be the set
of factors that include a mix of random and decision vari-
ables. A TTRW upper bound is obtained by decomposing
the original factor graph into a weighted convex combination
of special “AB” trees that each allows tractable MMAP in-
ference. Let T denote a tree, which includes a subset of the
factors of the original factor graph. We denote by weight
ρT the probability associated with T in the convex com-
bination. Thus, in the message-passing rules below, when
ρf is the appearance probability of factor f in the convex
combination of trees (i.e. ρf =

∑
{T |f∈T } ρT ), the result is a

TTRW upper bound on marginal-MAP and when ρf = 1 ∀f
the result is a Bethe approximation of marginal-MAP. The
following rules define the messages μ to be passed between
variables and factors.

Messages from variables to factors:

μxk→fi(xk) =
∏

fh∈neighbours(xk)

μfh→xk
(xk)

Messages from “A” factors to variables:

μf→xj (xj) =

[∑
∼xj

∏
k �=j

{
μxk→f (xk)·

(
f(Xf )

μf→xk
(xk)

)1/ρf
}]ρf

Messages from “B” factors to variables:

μf→xj (xj) = max
∼xj

∏
k �=j

{(
μxk→f (xk)

)ρf ·
(

f(Xf )

μf→xk
(xk)

)}

Messages from “AB” factors to variables:

µf→xj
(xj) =

[ ∑
{xA,x∗

B
\xj}

∏
k �=j

{
µxk→f (xk)

(
f(Xf )

µf→xk
(xk)

)1/ρf
}]ρf

Here, xA denotes the “sum-out” random variables and x∗
B

denotes the “max-out” decision variables with their domain
restricted to the values that maximize

∏
fh
μfh→xk

(xk).
Fig. 2 compares the log probability proportional to the

sum of discounted rewards of the policy found by exact
marginal-MAP to the Bethe approximation and the TTRW
upper bound on a set of benchmark POMDPs with plan-
ning horizon h in parentheses. The graph shows how the
log probability of each algorithm converges as the number
of iterations of message passing increases.

-47

-37

-27

-17

-7

3

13

tiger.95˙nodes5˙horizon3˙stationary

POMDP(h) FBethe FTTRW ln(exact)
4x5x2.95(5) -45.80 -42.45 -46.12
tiger.95 (5) -21.58 -19.02 -21.58
hhepisobs woNoise (8) -113.15 -108.06 -110.9
chainOfChains3 (10) -38.05 - 37.52 - 36.88

Figure 2: Results for several POMDP benchmark problems

3. CONCLUSION
We demonstrated that the optimization of POMDP con-

trollers can be casted as a marginal-MAP inference prob-
lem in a novel single-DBN generative model, which can be
solved by a variational hybrid “mixed-product”algorithm to
obtain an approximate solution and its upper bound. The
proposed approach is evaluated on several POMDP bench-
mark problems and the performance of the implemented
variational algorithms is compared to SamIam Bayesian solver.
Future work will focus on the optimization of the weight
vector ρ to achieve tighter upper bounds and to scale the
algorithms to problems with longer planning horizons.
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