
Engineering JIAC Multi-Agent Systems

(Demonstration)

Marco Lützenberger, Thomas Konnerth, Tobias Küster,

Jakob Tonn, Nils Masuch, and Sahin Albayrak

Technische Universität Berlin, DAI-Labor

Ernst-Reuter-Platz 7

10587 Berlin, Germany

marco.luetzenberger@dai-labor.de

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Distributed Artificial
Intelligence—Multiagent systems

Keywords
agent platform; development environments

1. INTRODUCTION
The development of high quality software is considered to

be extremely di�cult. In fact, it has been argued that such
endeavours are one of the most di�cult construction tasks
that humans undertake [2]. Contemporary IT-infrastructures
facilitate the need for distributed applications—a system de-
sign which can be implemented with Agent Oriented Soft-
ware Engineering [2]. Yet, despite the requirement for dis-
tributed systems and despite the availability of frameworks,
methodologies and tool suites that support the development
of distributed applications, there are only few attempts to
use agent technology for commercial or industrial applica-
tions.

The reasons for this are not entirely clear, though, anal-
yses [6, 7, 9] show that there are several factors that may
foster industrial adoption of agent technology. These fac-
tors include: awareness for the need for agent technology,
compliance with standards, reasonable costs, scalability and
performance, stability and robustness, extensibility, mature
methodologies and tool support, and a comprehensive user
documentation.

To facilitate the industrial adoption of agent technology,
we developed the Java Intelligent Agent Componentware, or
JIAC [4]. JIAC supports a comprehensive set of standards,
ensures reliable applications, supports custom extensions,
and provides a whole set of user friendly and well docu-
mented tools for the design, implementation, deployment,
and monitoring of multi-agent systems. Agent frameworks
with a focus on industrial requirements, however, find it dif-
ficult to gain foothold in the realm of research where other
factors determine their level of acceptance. The aim of JIAC
is to show that industrial requirements and research needs
can be combined in one solution.

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright

c� 2014, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

2. THE JIAC AGENT FRAMEWORK
JIAC [4] is a Java-based multi-agent framework and run-

time environment, which integrates the agent paradigm with
Service Oriented Architectures. JIAC’s discovery and mes-
saging infrastructure is based on ActiveMQ1, which facili-
tates a transparent distribution of JIAC agents—even be-
yond network boundaries.

An agent-platform comprises one or more ‘agent nodes’,
which are physically distributed and provide the runtime
environment for JIAC agents. New agents, services, as well
as further agent nodes can be deployed at runtime. Agents
can interact with each other by means of service invoca-
tion, by sending messages to individual agents or multicast-
channels, and by complex interaction protocols. Each in-
dividual agent’s knowledge is stored in a tuple-space based
memory. Finally, JIAC agents can be remotely monitored
and controlled at runtime by means of the Java Management
Extension Standard (JMX ).

Each agent contains a number of default components, such
as an execution-cycle, a local memory and communication
adaptors. The agents’ behaviours and capabilities are im-
plemented in so-called AgentBeans, which are controlled by
the agent’s life cycle.

AgentBeans are capable of reactive-, proactive-, iterative-,
or controlled behaviour and thus comply with the key char-
acteristics of software agents [10]. The assembly of the en-
tire multi-agent system is described by one ore more Spring2

configuration files.

3. ENGINEERING JIAC AGENTS
The JIAC framework comes along with a number of edi-

tors and tools, most of which are Eclipse plugins.
First, a specific Eclipse plugin, the JIAC Project Plugin,

provides a special kind of Eclipse Project Nature for JIAC
projects. The project plugin comes along with a project wiz-
ard, which creates a Project Object Model, allowing Apache
Maven3 to download and install the JIAC libraries and all its
dependencies and create an according Eclipse project. Be-
sides the JIAC Project plugin there are additional Eclipse
views, each providing a particular functionality to ease the
development of JIAC agents and -applications. These views
include lists of components of the current JIAC project, lists
of all the JIAC nodes running in the same network, or func-

1ActiveMQ: http://activemq.apache.org
2Spring: http://www.springsource.org/
3Maven: http://maven.apache.org

1647



tionality to access the AgentStore [1], in order to include
deployed components into the current project, and for pack-
aging the current project and deploying it to the store itself.

As mentioned above, JIAC uses Spring configuration files
to describe the assembly of multi-agent systems. Being
based on XML, Spring configuration files are considerably
di�cult to edit. The Agent World Editor (AWE) [3] was
developed to alleviate this problem by providing a graphi-
cal overview and an editor for these files. After modelling
the multi-agent system, using intuitive graphical symbols
for agents, nodes and beans, the AWE can be used to gener-
ate both, the configuration files and stubs for the individual
agent beans. AWE can also be used for managing agent
configurations that are laid out across several files and for
importing and editing existing files.

The Visual Service Design Tool (VSDT ) [3] is an Eclipse-
based editor for the Business Process Modeling Notation.
It allows to design and implement services and entire multi-
agent systems in terms of process diagrams. VSDT features:
modelling assistance, structural validation, and a simple in-
terpreter/simulator for stepping through the processes and
interpreting the diagrams, which has proven very useful for
debugging. Processes modelled in the VSDT can be trans-
formed and exported to a number of JIAC Agent Beans.
These processes can be exposed as a JIAC service or trig-
gered at a given time, or on receiving a particular JIAC
message.

ASGARD [8] is the next tool in the development chain
of JIAC. ASGARD is a visual monitoring application with
management capabilities for the JIAC platform. ASGARD
provides a three-dimensional graphical overview of currently
running JIAC entities within a local network and uses the
visualisation to indicate properties and states of-, as well
as interaction between JIAC entities. ASGARD’s main use
is to support developers during implementation and test-
ing of distributed JIAC applications as well as to check the
current state of deployed applications at runtime for main-
tenance purposes. ASGARD uses JIAC’s integrated moni-
toring interface to connect to local and remote entities via
JMX. Automatic discovery of running JIAC entities is pro-
vided by the use of multicast technology, RMI registries,
and peer-to-peer forwarding of known entity addresses.

In order to provide a high degree of flexibility in changing
environments, agents must be able to dynamically interpret
and invoke the functionality of other agents. The enhance-
ment of services by semantic information allows for such
an approach. The Semantic Service Manager [5] directly
addresses this problem by o↵ering an editor for the descrip-
tion of JIAC actions as OWL-S services at design time. It
consists of an OWL ontology manager, which provides auto-
mated integration of new OWL ontologies and a transforma-
tion procedure from EMF Ecore models to OWL. In general,
the manager supports the developer by automatically anno-
tating JIAC actions with OWL-S descriptions, which can be
refined manually afterwards. After the agent systems have
been developed, they can be deployed to the AgentStore [1].
Inspired by the popular ‘app store’ metaphor, as known e.g.,
from Apple or Google, this AgentStore can be used for de-
ploying, sharing, and reusing multi-agent systems.

4. REFERENCES
[1] A. Heßler, B. Hirsch, T. Küster, and S. Albayrak.

Agentstore — A pragmatic approach to agent reuse.
In F. Dechesneand, H. Hattori, A. ter Mors, J. M.
Such, D. Weyns, and F. Dignum, editors, Advanced
Agent Technology. AAMAS 2011 Workshops,
AMPLE, AOSE, ARMS, DOCM3AS, ITMAS, Taipei,
Taiwan, May 2–6, 2011. Revised Selected Papers,
volume 7068 of Lecture Notes in Artificial Intelligence,
pages 128–138. Springer, 2012.

[2] N. R. Jennings and M. Wooldridge. Agent-oriented
software engineering. Artificial Intelligence,
117:277–296, 2000.

[3] T. Küster, M. Lützenberger, A. Heßler, and B. Hirsch.
Integrating process modelling into multi-agent system
engineering. Multiagent and Grid Systems,
8(1):105–124, January 2012.

[4] M. Lützenberger, T. Küster, T. Konnerth, A. Thiele,
N. Masuch, A. Heßler, J. Keiser, M. Burkhardt,
S. Kaiser, and S. Albayrak. JIAC V — A MAS
framework for industrial applications (extended
abstract). In T. Ito, C. Jonker, M. Gini, and
O. Shehory, editors, Proceedings of the 12th

International Conference on Autonomous Agents and
Multiagent Systems, Saint Paul, Minnesota, USA,
pages 1189–1190, 2013.

[5] N. Masuch, P. Brock, and S. Albayrak.
Semi-automated generation of semantic service
descriptions. In J. B. Pérez, J. M. C. Rodŕıguez,
J. Fähndrich, P. Mathieu, A. Campbell, M. C.
Suarez-Figueroa, A. Ortega, E. Adam, E. Navarro,
R. Hermoso, and M. N. Moreno, editors, Trends in
Practical Applications of Agents and Multiagent
Systems, volume 221 of Advances in Intelligent
Systems and Computing, pages 155–162. Springer
International Publishing, 2013.

[6] J. McKean, H. Shorter, M. Luck, P. McBurney, and
S. Willmott. Technology di↵usion: Analysing the
di↵usion of agent technologies. Autonomous Agents
and Multi-Agent Systems, 17:372–396, 2008.

[7] M. Pěchoučyek and V. Mař́ık. Industrial deployment
of multi-agent technologies: review and selected case
studies. Autonomous Agents and Multi-Agent Systems,
17(3):397–431, 2008.

[8] J. Tonn and S. Kaiser. ASGARD — A graphical
monitoring tool for distributed agent infrastructures.
In Y. Demazeau, F. Dignum, J. M. Corchado, and
J. B. Pérez, editors, Advances in Practical
Applications of Agents and Multiagent Systems,
volume 70 of Advances in Intelligent and Soft
Computing, pages 163–175. Springer, 2010.

[9] D. Weyns, H. Van, D. Parunak, and O. Shehory. The
future of software engineering and multi-agent
systems. Special Issue on Future of Software
Engineering and Multi-Agent Systems, International
Journal of Agent-Oriented Software Engineering
(IJAOSE), 2008.

[10] M. Wooldridge. Agent-based software engineering.
IEEE Proceedings — Software, 144(1):26–37, 1997.

1648




