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ABSTRACT

Difference rewards and potential-based reward shaping can
both significantly improve the joint policy learnt by multiple
reinforcement learning agents acting simultaneously in the
same environment. Difference rewards capture an agent’s
contribution to the system’s performance. Potential-based
reward shaping has been proven to not alter the Nash equi-
libria of the system but requires domain-specific knowledge.
This paper introduces two novel reward functions that com-
bine these methods to leverage the benefits of both.
Using the difference reward’s Counterfactual as Poten-

tial (CaP ) allows the application of potential-based reward
shaping to a wide range of multiagent systems without the
need for domain specific knowledge whilst still maintaining
the theoretical guarantee of consistent Nash equilibria.
Alternatively, Difference Rewards incorporating Potential-

Based Reward Shaping (DRiP ) uses potential-based reward
shaping to further shape difference rewards. By exploiting
prior knowledge of a problem domain, this paper demon-
strates agents using this approach can converge either up to
23.8 times faster than or to joint policies up to 196% better
than agents using difference rewards alone.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multia-
gent Systems

General Terms

Algorithms, Performance, Experimentation

Keywords

Reward Shaping; Multiagent Reinforcement Learning

1. INTRODUCTION
Multiagent reinforcement learning solutions benefit from

task distribution and adaptive, autonomous behaviour. How-
ever, the problem of structural credit assignment is often a
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limiting factor when deploying such a solution. It is very dif-
ficult when multiple agents are acting in the same environ-
ment to determine, from the environment’s reward function
alone, who was responsible for the feedback received.

Difference rewards have been repeatedly demonstrated to
help with credit assignment [1, 2, 14, 9, 15, 16] by shaping
the global reward to instead reward agents contributing to
the system’s performance and punish agents that do not.
This approach typically improves the resultant behaviour of
agents significantly.

Potential-based reward shaping has also recently been used
to improve multiagent reinforcement learning solutions [3, 5,
6]. This approach is theoretically guaranteed to learn a joint
policy from the same set of possible joint policies agents us-
ing the original reward function alone would have learned.
However, unlike difference rewards, potential-based reward
shaping requires prior knowledge of the problem domain and
is typically tailored to each new application.

These two methods have previously only been studied sep-
arately but are not mutually exclusive. Therefore, in this
work, we use them together to leverage the benefits of both.

One approach to combining these methods is to represent
the knowledge captured by difference rewards as a potential
function. This approach has the same theoretical guarantees
as multiagent potential-based reward shaping and can be
applied without the need for domain specific knowledge.

The second approach is to use potential-based reward shap-
ing with a manual heuristic to shape difference rewards.
This approach incorporates domain specific knowledge into
agents learning by difference rewards and performs signifi-
cantly better than agents learning by either approach alone.

Specifically, the contributions of this work are:

• Counterfactuals as Potential (CaP ):
An automated method of generating a multiagent po-
tential function from the same knowledge represented
by difference rewards.

• Difference Rewards incorporating
Potential-Based Reward Shaping (DRiP ):
Shaping difference rewards by potential-based reward
shaping to significantly improve the learning behaviour
of either alone.

The rest of this paper is organized as follows. The next
section covers all relevant background material. Section 3
introduces a unified framework and formally specifies CaP
and DRiP within this framework. These approaches are
then evaluated in Sections 4 and 5 in two distinct domains.
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The first is a well studied congestion problem with a known
optimal solution chosen for thorough analysis. This study is
also the largest scale application of potential-based reward
shaping, in terms of number of agents, published to date.
The second is a coordination domain with a significantly
larger state space. The paper concludes with a section dis-
cussing the implications of combining difference rewards and
potential-based reward shaping.

2. BACKGROUND
Reinforcement learning allows agents to learn by reward

and punishment from interactions with the environment [13].
One common algorithm from this field is Q-learning [17].
After each transition, from state s to s′ due to action a, Q-
learning updates state-action values Q(s, a) by the formula:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

where α is the rate of learning, r the reward received from
the environment and γ is the discount factor.
From these values a policy mapping states to actions can

be generated. To balance the requirements of both explo-
ration and exploitation, one method of action selection is
epsilon-greedy. This method chooses the highest value ac-
tion for the current state with probability 1− ǫ and chooses
a random action with the remaining probability ǫ [13].
For large domains, storing values for every state can be

infeasible. In these instances it is necessary to use function
approximation to generalise across states. One common ap-
proach is tile coding [13], this method groups states by an
exhaustive partition of the state space. By including less
tiles than states, agents can learn significantly quicker.
Multiagent systems deploy multiple agents in the same

environment and can therefore benefit from the distribution
of tasks and redundancy of agents [22].
Unlike single-agent reinforcement learning where the goal

is to maximise the individual’s reward, when multiple self
motivated agents are deployed some compromise must be
made. Typically the system is designed aiming to converge
to a Nash Equilibrium [4].
Two typical reward functions for multiagent reinforcement

learning exist; local rewards unique to each agent or global
rewards representative of the group’s performance.
A local reward (Li) is the reward based on the part of

the system that an agent i can directly observe. Using this
reward signal often encourages “selfish” behaviour, in which
the agent may act at cross-purposes with other agents while
blindly attempting to increase its own reward, causing poor
system performance.
The global reward (G) is the system performance used

as a learning signal. This encourages the agent to act in
the system’s interest, but includes a substantial amount of
noise from other agents acting simultaneously. An agent’s
own contribution to the global reward may be dwarfed by
the contribution of hundreds of other agents, resulting in a
low “signal to noise ratio” [2].
The immediate reward from the environment in both these

cases (Li or G) is often infrequent and ambiguous. This
raises issues of both temporal and structural credit assign-
ment [1]; the problems of which action and which agent
were responsible for the reward received. The idea of re-
ward shaping is to provide an additional, more informative
reward to simplify learning [10, 12]. Two popular methods

of reward shaping, previously studied separately, are differ-
ence rewards and potential-based reward shaping. Each will
be reviewed in depth in the following sections.

2.1 Difference Rewards
To use reinforcement learning in a multiagent system, it

is important to reward an agent based on its contribution to
the system. This is difficult due to the other agents acting
in the environment, obscuring the agent’s individual contri-
bution to the system objective.

The difference reward (Di) is a shaped reward signal
that helps an agent learn the consequences of its actions
on the system objective by removing a large amount of the
noise created by the actions of other agents active in the
system [1, 2]. It is defined as

Di(z) = G(z)−G(z−i) (2)

where z is a general term representative of either states or
state-action pairs depending on the application, G(z) is the
global system performance, and G(z−i) is G(z) for a theo-
retical system without the contribution of agent i.

Any action taken to increase Di simultaneously increases
G, while agent i’s impact on its own reward is much higher
than its relative impact on G [2]. These two properties al-
low for the difference reward to boost learning performance
(over training with another reward function) in a multiagent
system by a significant degree.

The difference reward can generally be estimated, even in
extremely complex domains like air traffic in the US airspace [14].
However, because of the nature of the domains used in this
work, Di is directly calculable.

Using difference rewards directly or estimating them has
proven to be an effective technique for credit assignment
in many applications, including rover coordination, urban
road traffic management, data routing, distributed product
marketing and satellite coordination [2, 9, 16, 15, 21, 20].

2.2 Potential-Based Reward Shaping
If misused, reward shaping can introduce undesirable be-

haviours. For example, when trying to make an agent learn
to ride a bicycle from point A to point B, Randløv and Al-
strom gave an additional positive reward every time step
the bike stayed balanced. This advice seems intuitive, how-
ever, the agent learnt to exploit it and circled continuously
instead of moving towards its intended goal at point B [12].

Potential-based reward shaping (PBRS) was pro-
posed to ensure such problems do not occur [10]. The ad-
ditional reward given in this approach is the difference of
a potential function Φ defined over a source state s and a
destination state s′:

PBRS = r + γΦ(s′)− Φ(s) (3)

where r is the original reward from the environment and γ is
the same discount factor as used in the agent’s update rule
(see Equation 1).

This formulation of reward shaping has been proven to not
alter the optimal policy of a single agent in both infinite- and
finite- state MDPs [10].

Wiewiora [18] later proved that an agent learning with
potential-based reward shaping and no knowledge-based Q-
table initialisation will behave identically to an agent with-
out reward shaping when the latter agent’s value function is
initialised with the same potential function.
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More recent work on potential-based reward shaping has
removed the assumptions of a single agent acting alone and
of a static potential function from the original proof. In
multiagent systems, it has been proven that potential-based
reward shaping can change the joint policy learnt but does
not change the Nash equilibria of the underlying game [6].
With a dynamic potential function, it has been proven

that the existing single agent and multiagent guarantees are
maintained provided the potential of a state is evaluated at
the time the state is entered and used in both the potential
calculation on entering and exiting the state. Furthermore,
potential-based reward shaping with a dynamic potential
function is not equivalent to Q-table initialisation [7].
To ensure these theoretical guarantees in episodic domains

it is necessary that the potential of the final state of ev-
ery episode has a potential of zero. Our preferred method
of doing this is to transition all agents at the end of an
episode to an absorbing state regardless of the final state or
action chosen. This transition receives zero reward from the
environment, but still receives the additional reward from
potential-based reward shaping. Given that this occurs in
all circumstances, is not dependent on state or action and
gives no additional environmental reward it can be applied
to agents learning by any reward function without altering
their learning behaviour.
To apply potential-based reward shaping some prior knowl-

edge of the domain is required. The potential function Φ(s)
should return a value representative of the believed desir-
ability for the agent to be in state s. This has been imple-
mented previously using heuristic knowledge [5, 10, 19] or
a STRIPS plan [8]. Until now, no multiagent applications
have automated this assignment of potential to states.

3. UNIFIED FRAMEWORK
The primary purpose of this work is to bring together

two well studied reward shaping methodologies; difference
rewards and potential-based reward shaping. The purpose
of this framework is to make a modular system in which
different parts of each of the reward shaping methodologies
can be used to their greatest advantage. This allows us
to leverage the benefits offered by both, while reducing the
impact of their respective weaknesses.
We represent this framework through a generic reward-

shaping representation, in which the shaped reward is for-
mulated as:

rshaped = r(s, a, s′) + F (s, s′) (4)

where r is the original reward received from the environment
after the transition from state s to state s′ upon taking ac-
tion a, and F (s, s′) is the additional shaping reward.
The shaped reward rshaped then replaces r in the agent’s

update rule (see Equation 1).
Within this framework, typical applications of potential-

based reward shaping take the form:

r(s, a, s′) = G(s, a, s′)

F (s, s′) = γΦ(s′)− Φ(s) (5)

where Φ(s) is implemented manually with domain specific
knowledge.

Alternatively, for a traditional difference reward, this frame-
work takes the form:

r(s, a, s′) = G(s, a, s′)

F (s, s′) = −G(s′−i) (6)

This framework can leverage the benefits offered by any
particular reward function and shaping signal. If a local re-
ward function represents a fairly robust policy where agents
are all independently productive, it may serve well to set
r(s, a, s′) = Li(s, a, s

′). Likewise the reward shaping sig-
nal F (s, s′) can be adjusted in the same manner. Fur-
thermore, F (s, s′) could be replaced with the more general
F (s, a, s′, a′) to include reward shaping based on actions as
well as states [19]. However, such an extension was not
needed for the methods we have studied here.

The next two sections formally define, within the format
of this framework, our two novel combinations of difference
rewards and potential-based reward shaping.

3.1 Counterfactual as Potential (CaP )
Drawing inspiration from the difference reward, one useful

method for multiagent potential-based reward shaping is to
automatically assign potentials to states by using the coun-
terfactual term G(z−i). Formally, in the uniform framework
CaP is defined as:

r(s, a, s′) = G(s, a, s′)

F (s, s′) = γΦ(s′)− Φ(s)

Φ(s) = G(s−i) (7)

This rewards agents for high-performing global evalua-
tions (first term), while also encouraging them to be in states
(second term) where the other agents in the system are per-
forming well (third term). This reduces the likelihood that
they will choose to work at cross-purposes and drive down
system performance.

Given that Φ(s) is based entirely on the state of other
agents, CaP will give different potentials for the same local
state. This makes CaP an instance of dynamic potential-
based reward shaping [7]. Therefore, CaP is guaranteed to
learn a policy from the same set of policies as would have
been learnt by G alone but is not equivalent to Q-table ini-
tialisation. Furthermore, this reward signal is aligned with
the global reward, which means that any steps taken to in-
crease it will simultaneously increase G(s, a, s′); a benefit
commonly attributed to difference rewards [15].

As CaP is guaranteed to have the same Nash equilibria
as G alone or with any other potential-based reward shap-
ing, its merit will be judged in comparison to these reward
functions.

3.2 Difference Rewards incorporating
Potential-Based Reward Shaping (DRiP )

Alternatively, we can further shape the difference reward
signal by simultaneously applying potential-based reward
shaping. Formally, in the unified framework this approach
is defined by:

r(s, a, s′) = G(s, a, s′)

F (s, s′) = −G(s′−i) + γΦ(s′)− Φ(s) (8)

This approach directly leverages the benefits of difference
rewards, and also allows prior knowledge specified by Φ(s)
to be provided to the agents.
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This method is guaranteed to learn a policy from the same
set of policies that could have been learnt by difference re-
wards alone. This can be proven using the same reasoning
as the original proof for multiagent potential-based reward
shaping [6].
The merit ofDRiP will be judged by whether it can direct

exploration sufficiently to either increase the rate of learn-
ing and/or the quality of the final joint policy compared to
difference rewards alone.

4. BEACH PROBLEM DOMAIN (BPD)
We present these techniques first in the BPD, a conges-

tion game with multiple states [11]. This domain presents a
congestion problem in which the agents must coordinate to
maximize a system level goal.
We have also completed the same experiments in the clas-

sical version of the El Farol Bar problem and obtained very
similar results. However, the BPD allows us to demonstrate
the ability of CaP and DRiP to perform well in problem
instances with multiple states and timesteps.

4.1 Description and Algorithm
In the BPD, each individual agent must choose at which

section of a beach they will spend their day. Agents start
initially near a hotel on one section of the beach. At each
time step, an agent knows which section of the beach it
is currently on and must take an action to move to either
an adjacent section (left or right) or stay still. Once all
agents have moved, they are rewarded. The highest rewards
are received for sections of the beach where the number of
agents present is equal to the optimal capacity ψ. If more
than ψ agents are present, the beach section is overcrowded
and, therefore, undesirable. Beach sections with less than
ψ agents are also undesirable. However, there are many
more agents than ψ ∗ sections and, therefore, the BPD is
a congestion problem. This process is detailed further in
Algorithm 1.
Formally, the enjoyment of the agents on each section of

beach is modeled as:

L(s, t) = xte
−xt
ψ (9)

where L(s, t) is the local reward for the beach section s, xt
is the number of agents on that beach section at timestep
t, and ψ is the optimal capacity of that section. The global
reward or system utility, then, is simply a summation over
all sections of the beach:

G(t) =
∑

s∈B

L(s, t) (10)

where B is the set of sections in the beach.
For each agent, the difference reward can be directly cal-

culated by applying Equation 2; every section not currently
attended by the agent at a particular timestep cancels out,
as the agent has no impact on their evaluations, leaving:

Di(t) = L(s, t)− (xt − 1)e
−xt−1

ψ (11)

where xt is the number of agents attending the same section
of the beach s as agent i at timestep t. This evaluation is
precisely equivalent to applying Equation 2 to Equation 10
directly.
In the BPD, with a sufficient number of agents, the opti-

mal solution is for all of the agents to converge to a single

Algorithm 1 Beach Problem Domain with DRiP

1: initialize Q-values: ∀s, a|Q(s, a) = −1
2: initialize static potential Φ via Equations 12
3: for episode = 1→ end episode do
4: for timestep = 1→ end timesteps do
5: for i = 1→ total agents do
6: sense current section s
7: set potential Φ(s) (Equation 12)
8: choose action a = {−1, 0, 1}, using ǫ-greedy
9: move agent to s′ = {s− 1, s, s+ 1}
10: set potential Φ(s′) (Equation 12)
11: end for
12: move agents s′ /∈ B to nearest section
13: for All beach sections s ∈ B do
14: evaluate local rewards (Equation 9)
15: end for
16: evaluate global reward (Equation 10)
17: for i = 1→ total agents do
18: evaluate difference rewards (Equation 11)
19: set rshaped (Equation 8)
20: update Q(s, a) values (Equation 1)
21: end for
22: reduce ǫ by multiplication with decay rate
23: reduce α by multiplication with decay rate
24: end for
25: for i = 1→ total agents do
26: choose action a, using ǫ-greedy
27: move to absorbing state
28: set rshaped = 0− Φ(s′)
29: update Q(s′, a) values (Equation 1)
30: end for
31: end for

section of the beach, while only ψ agents stay on each of
the other sections of the beach. This results in the highest
possible G calculation. Therefore, for an instance of this do-
main with 5 beach sections, the manual, hand-coded heuris-
tic used by DRiP encourages this behaviour. Specifically,
for all states Φ(s) = 0 except for the following cases:

if agent id ∈ [0, ψ − 1] Φ(0) = 10

if agent id ∈ [ψ, 2ψ − 1] Φ(1) = 10

if agent id ∈ [2ψ,X − 2ψ − 1] Φ(2) = 10

if agent id ∈ [X − 2ψ,X − ψ − 1] Φ(3) = 10

if agent id ∈ [X − ψ,X − 1] Φ(4) = 10 (12)

where X =
∑size(B)

i=0 xi i.e. the number of agents.
While this potential function is not optimal, it does pro-

vide a very high amount of information to the agents and
aids greatly in their coordination. This heuristic was also
used with the global reward to represent a typical solution
using potential-based reward shaping.

4.2 Experimental Setup
We present two studies in the BPD; the first is a single-

step instance (i.e. end timestep = 1) with γ = 0.9 whilst
the second is time-extended with end timestep = 5 and γ =
1. The experimental parameters were as follows: α = 0.1,
alpha decay rate = 0.9999, ǫ = 0.05, epsilon decay rate =
0.9999, end episode = 20, 000, num agents = 100, capacity
ψ = 7, beach sections size(B) = 5. The first num agents/2
begin at a hotel on beach section 1, the rest at section 3.
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In all cases, regardless of the learning signal, we report on
the final system-level performance G and include error bars
representative of the standard error of the mean based on 30
statistical runs. Specifically, we calculate the error as σ/

√
n

where σ is the standard deviation and n is the number of
statistical runs. For some reward functions, in some figures
the error bars are smaller than the symbols used to plot the
result. However, they are present on all graphs for all reward
functions.

4.3 Experimental Results
In the single-step instance of the BPD, presented in Fig-

ure 1, we see the typical result of agents learning by Li per-
forming poorly, those learning by G performing significantly
better and those learning by D significantly better still.
The more interesting contribution of this study, however,

is to consider the performance of CaP with regard toG alone
and G+ManualPBRS and the performance of DRiP with
comparison to D alone.
In this instance, as will become a recurring pattern, DRiP

learns significantly quicker than any other method and learns
a joint policy representative of the highest global perfor-
mance. More specifically, in this instance of the BPD, agents
usingDRiP converge 23.8 times faster than agents using dif-
ference rewards alone where time of convergence is taken to
be the first 10 consecutive episodes to all be within 5% of
the average performance of the final 150 episodes.
G+CaP significantly outperforms G alone but is beaten

by G +ManualPBRS. However, the performance of G +
ManualPBRS is highly dependent on the quality of the
heuristic given. Furthermore, the potential function given
by Equation 12 and presented in Figure 1 is very strong.
To emphasise how much potential-based reward shaping

with manual implementations of Φ depends on the quality of
heuristic, we designed 3 other heuristics and applied them in
the single-step instance of the BPD. Figure 2 illustrates G+
ManualPBRS with each heuristic and Figure 3 illustrates
DRiP with each of them. The heuristics used are:

• Overcrowd One: The same heuristic used in the pre-
vious experiment and defined in Equation 12.

• Middle: All agents are invited to a party at beach 2.

if s == 2 Φ(s) = 10 (13)

else Φ(s) = 0 (14)
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Figure 1: Single-step Beach Domain Results

• Spread: Agents are encouraged to spread evenly across
the beach.

if agent id ∈ [0, (X/size(B))− 1] Φ(0) = 10

if agent id ∈ [X/size(B), (2X/size(B))− 1] Φ(1) = 10

if agent id ∈ [2X/size(B), (3X/size(B))− 1] Φ(2) = 10

if agent id ∈ [3X/size(B), (4X/size(B))− 1] Φ(3) = 10

if agent id ∈ [4X/size(B), (5X/size(B))− 1] Φ(4) = 10

(15)

where X =
∑size(B)

i=0 xi i.e. the number of agents.

• Overcrowd All: Encourages agents to go to slightly
overcrowded beaches.

if ψ < xt < 2ψ Φ(s) = 10 (16)

else Φ(s) = 0 (17)

Figures 2 and 3 show there can be significant differences
in learning behaviour when different heuristics are used but
DRiP is more resilient to changes in the heuristic shaping
it than G. Both figures also show examples of a heuristic
(overcrowd all) that negatively affects the final performance
of all agents. However, agents learning from DRiP with a
bad heuristic learn a joint behaviour of equivalent final per-
formance to those using G with its best heuristic (middle).

Next, we consider the results from the time-extended in-
stance of the BPD presented in Figure 4. In particular we
note that a minor change in the problem domain, moving
from a single timestep to 5 timesteps, has significantly re-
duced the performance of G+ManualPBRS. G+CaP now
significantly outperforms bothG alone andG+ManualPBRS.

Furthermore, DRiP again significantly outperforms all
other reward functions. Its resilience to quality of heuristic
is also present in its ability to handle changes in character-
istics of the problem domain.

Finally, it is worth noting, that these studies are signifi-
cantly larger, in terms of number of agents, than any previ-
ous published study of potential-based reward shaping. Be-
fore this work, the largest application was to a system with
5 agents learning simultaneously [5]. With so few agents in
previous studies, the question has been raised as to whether
the characteristic effects of multiagent potential-based re-
ward shaping (increased rate of learning and improved fi-
nal performance) would still occur with a larger number of
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Figure 2: Single-step Beach Domain with G +
ManualPBRS using Various Heuristics
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Figure 4: Time-Extended Beach Domain Results

agents. This study of the BPD contributes many positive
examples to support the argument that potential-based re-
ward shaping does scale well with the number of agents.

5. GRIDWORLD DOMAIN (GWD)
To exhibit the generality of CaP and DRiP , we present

results from a second domain: a multiagent grid world where
agents seek to observe distributed points of interest. Given
the settings chosen, this domain presents a coordination
problem, as opposed to the congestion problem of the previ-
ous domain. Furthermore, in this study we scaled in terms of
state-action space as opposed to number of agents to further
differentiate the two studies presented.

5.1 Description and Algorithm
In the GWD, multiple agents are deployed within a two

dimensional grid. Each of the agents in the set A must
individually choose their actions from {up, down, left, right,
stay still} to navigate toward points of interest (POIs ∈ P)
to observe. The quality of observation increases as the agent
gets nearer to the POI, and is summed over all timesteps.
Agents are initially bunched toward the center of the grid

world, and POIs are placed near the corners (we performed
other trials with other POI configurations and arrived at
similar results). Additional agents observing a POI do not
increase the system utility; only the highest quality observa-
tion is counted. The optimal policy is for agents to spread
out and obtain full coverage over the most valuable POIs.

The quality of observation O of each POI is calculated as:

O(agent, poi) =























value(poi)

value(poi)

dist(agent,poi)2

0

dist(agent, poi) <= 2

2 < dist(agent, poi) <= 10

otherwise

(18)
where dist(agent, poi) returns the manhattan distance be-
tween the agent and the POI and value(poi) returns a nu-
merical value representative of the desirability of the POI.

The total value of the POIs was set to a static value, to en-
sure all experiments could receive the same range of rewards.
However, the value of each individual POI was stochastically
determined before each run to limit the quality of the heuris-
tics that could be manually designed.

The agent’s local reward is set as the quality of obser-
vations that they conducted on all POIs, regardless of any
other agents that may be making observations of the same
POI:

Li(t) =
∑

poi∈P

O(i, poi) (19)

The global system utility is set as the quality of the best
observation across all POIs:

G(t) =
∑

poi∈P

max
i∈A

O(i, poi) (20)

Difference rewards are calculated as the quality of the best
observations attained, not considering agent i:

Di(t) = G(t)−
∑

poi∈P

max
i∈A−i

O(i, poi) (21)

Thus, the potential function for CaP is calculated as:

Φ(s) =
∑

poi∈P

max
i∈A−i

O(i, poi) (22)

Algorithm 2 Gridworld Domain with G+ CaP

1: initialize Q-values: ∀s, a|Q(s, a) = −1
2: for episode = 1→ end episode do
3: for t = 1→ end timesteps do
4: for i = 1→ total agents do
5: sense current state s = {x, y}
6: choose action a, using ǫ-greedy
7: move agent to s′ according to a
8: end for
9: evaluate global reward (Equation 20)
10: for i = 1→ total agents do
11: set Φ(s′) (Equation 22)
12: set rshaped = G+ γΦ(s′)−Φ(s) (Equation 7)
13: update Q(s, a) values (Equation 1)
14: end for
15: reduce ǫ by multiplication with decay rate
16: reduce α by multiplication with decay rate
17: end for
18: for i = 1→ total agents do
19: choose action a, using ǫ-greedy
20: move to absorbing state
21: set rshaped = 0− Φ(s′)
22: update Q(s′, a) values (Equation 1)
23: end for
24: end for
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As the static potential function, used for DRiP and G+
ManualPBRS, we simply direct the agents to move away
from the center point to encourage exploration:

Φ(s) = dist(agent, center) (23)

where center is the point at the center of the grid world near
which the agents started.
Note that this potential function offers no operational

knowledge about the location or value of the POIs, and
merely serves to encourage the agents to explore away from
the center. This is a contrasting type of potential function
to that employed in the BPD, which expressed significant
domain knowledge.

5.2 Experimental Setup
We present two studies in the GWD; the first is on a 10x10

grid with deterministic actions whilst the second is on a
100x100 grid approximated by the agents by a single 10x10
tiling with 5% chance of action failure. The first setting
ran 2500 episodes of 50 time steps. The second ran 2500
episodes of 250 time steps.
The experimental parameters were as follows: α = 0.1,

alpha decay rate = 0.9999, ǫ = 0.2, epsilon decay rate =
0.9999, γ = 0.9, num agents = 4, and num POIs = 4. All
POIs have a value of 1, except one that is chosen at random
at the beginning of a run to have value 5. By assigning
the value of POIs randomly, designing a suitable heuristic
becomes significantly harder.
In all cases, regardless of the learning signal, we report on

the summation of system-level performance G over all time
steps and include error bars representative of the standard
error of the mean based on 30 statistical runs. Specifically,
we calculate the error as σ/

√
n where σ is the standard

deviation and n is the number of statistical runs. For some
reward functions, in some figures the error bars are smaller
than the symbols used to plot the result. However, they are
present on all graphs for all reward functions. Please note,
given the longer episodes, the agents in the second setting
can receive significantly higher rewards.

5.3 Experimental Results
In the first instance of the problem domain, the results

presented in Figure 5 show that G+CaP again significantly
outperforms G alone and DRiP again significantly outper-
forms all other solutions.
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Figure 5: 10x10 GridWorld Domain

The largest difference in this result compared to those in

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

Episode

G
lo

b
a

l 
R

e
w

a
rd

DRiP

L + Manual PBRS

L

G + CaP

G + Manual PBRS        D

G 

Figure 6: 100x100 Stochastic GridWorld Domain

the BPD is that agents learning by the local reward can
now match those using difference rewards. This occurs be-
cause agents acting in their own self interest have a very high
signal-to-noise ratio on their local learning signal, allowing
them to quickly discern which of their actions increased their
reward. In this domain agents are less likely to work at cross-
purposes than in the BPD, where the congestion creates a
situation where doing so is more likely. This observation
further emphasises the difference between the two domains
presented in this paper, supporting our argument that CaP
and DRiP are generally applicable.

Given the high performance of agents using local rewards,
we performed additional experiments with L+ManualPBRS.
As with global rewards, the manual heuristic used is suit-
able in this instance of the problem domain and, therefore,
L+ManualPBRS significantly outperformed L. However,
despite being equal to difference rewards when neither re-
ceived potential-based reward shaping, DRiP still signifi-
cantly outperformed L+ManualPBRS.

This result becomes even more impressive when we move
on to the larger instance of the problem domain, results from
which are presented in Figure 6. In this example, agents
learning by local rewards alone now significantly outperform
those learning with difference rewards alone.

However, agents learning from DRiP are still the best
performing of all agents. The effect of adding potential-
based reward shaping to difference rewards (a 196% increase
in performance) is significantly larger than adding it to local
rewards. By exploiting domain specific knowledge, DRiP is
able to learn a suitable policy in a problem domain where
difference rewards alone cannot.

6. DISCUSSION
To conclude this paper we collate our experiences of us-

ing DRiP and CaP in all domains studied. We have seen
repeatedly throughout that potential-based reward shaping
and difference rewards can be used together to leverage the
benefits of both.
DRiP consistently outperforms any other reward function

combining L, G, D and PBRS. If suitable domain specific
knowledge is available, exploiting it by potential-based re-
ward shaping in addition to difference rewards significantly
improves agents’ learning performance over using difference
rewards alone.
CaP provides a method of automatically generating a dy-
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namic potential function for multiagent problem domains.
CaP will be useful in future multiagent applications as it
removes the need to implement a domain-specific potential
function. Furthermore, CaP maintains the theoretical guar-
antee of consistent Nash equilibria provided by the proofs for
dynamic and multiagent potential-based reward shaping.
As CaP captures the same knowledge represented by dif-

ference rewards, using CaP with DRiP provides no further
advantages. In our experiments this combination typically
performed worse than difference rewards alone. This occurs
because these two signals represent the same knowledge by
different methods. Combining them increases the noise of
the signal whilst not increasing how informative it is.
The computational cost of CaP is equivalent to difference

rewards alone. However, dependent on the complexity of
the potential function used, DRiP may be more computa-
tionally expensive. In all examples studied the calculation
of D is more complex than the potential functions used and,
therefore, the theoretical bound of complexity is unaffected.
Furthermore, it is known that difference rewards work best

if the original reward function has a gradient throughout
[1]. Therefore, given the close links, so do CaP and DRiP .
Problem domains with a piecewise reward function may still
benefit from CaP and DRiP , however, if the reward func-
tion can be gradual the positive effect is likely to be larger.
Finally, according to the proof of necessity for potential-

based reward shaping [10], there must exist a problem do-
main for which difference rewards alter the Nash equilibria of
the system. Therefore, if an application specifically requires
the theoretical guarantees of potential-based reward shap-
ing, we would recommend CaP as it benefits from the the-
oretical properties of both difference rewards and potential-
based reward shaping whilst significantly improving perfor-
mance over G alone. Alternatively, if theoretical guarantees
are not a concern, we recommend DRiP for its significantly
better performance.
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