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ABSTRACT
Virtual agents are used by the military for extensive training
of pilots. However, creating virtual agents with the appro-
priate behaviors is a lengthy and specialized process. We de-
scribe a new tool (TAF) to allow rapid creation of virtual ad-
versarial agents by non-specialized personnel. In TAF, users
can draw diagrams of agent behavior which are matched
within a pre-existing knowledge base. By combining several
instances of similar behaviors a behavior model for a new
agent is created that matches the diagram provided by the
user.

1. INTRODUCTION
Modern combat jets are complex entities that require thou-

sands of hours of training before pilots are proficient enough
to fly in real missions. To train, students spend thousands
of hours in simulators (as well as many hours in real jets)
fighting against virtual adversarial agents in high fidelity
simulation environments.

“Pucksters” are teachers who, behind the scenes, manu-
ally control adversary agent behavior to fulfill the scenarios
training objectives. As training scenarios become lengthier
and more complex it is becoming expensive to maintain the
required personnel to support training within simulations.

Thus recent simulation platforms (particularly the “Next
Generation Threat System” (NGTS)) have allowed users to
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create behaviors for virtual agents in a flow-chart like visual
language. The resulting agent models are called “Behavior
Transition Network” (BTN) (Figure 2).

Compared to earlier systems in which agents automated
only through writing conventional computer code, BTNs
are a significant step forward in usability. Still, because
of the complexity of BTNs (which can have up to 100s of
nodes/edges to respond to a wide variety of situations), spe-
cialized personnel are required for development.

Current BTN development processes are costly, and do
not efficiently adapt over time to the needs of end users, new
platforms, or changes in tactics, techniques and procedures
(TTPs). Specialized personnel requirements results in high
support costs over the life-cycle of the simulation system.

Trainable Automated Forces (TAF) addresses the diffi-
culty of specifying behaviors for agents by inferring the de-
tails required to produce realistic and responsive behaviors,
based on a simple sketch provided by the user. Our vision
is for the user to plan a training mission like an American
Football coach explaining a new play to his team, by draw-
ing a sketch on a whiteboard. The players (agents) are able
to interpret the sketch because of their background knowl-
edge of the sport, and the commonality among almost all
plays. And as with a coach, some information beyond the
sketch is required.

2. THE TAF APPROACH
This section describes the process of creating a new agent

behavior using TAF (as shown in the accompanying demon-
stration video) and adds more detail on the approaches used
in the implementation.

First, the user creates a mission sketch in the TAF Sand-
box (Figure 1) which is based on the “Relational Black-
Board” (RBB) [1] 1 The Sandbox is essentially a temporal
drawing program - that is, each data point has an associ-
ated time, and the trajectory has bounded start and end
times. The Sandbox offers a palette of agent types (which
for NGTS includes different types of aircraft on each side
of the engagement). For each agent, the user selects a type
and draws its trajectory. After sketching, the user searches
the TAF Knowledge Base (KB) for relevant scenario traces.
The KB is a collection of NGTS scenario executions gen-
erated from hand-crafted BTNs included with NGTS. The
KB contains both the time-varying state of each simulation
(e.g. agent positions) as well as a model trace of the BTN

1RBB is available at http://rbb.sandia.gov
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execution for each agent that produced the observed behav-
ior. The essential function of TAF is to create the reverse
mapping, i.e. identifying a sequence of NGTS nodes that
will produce a desired outcome. This is how TAF generates
a detailed behavior from a high-level specification, such as
a sketch. So the success of TAF hinges on the completeness
of its knowledge base and the relevance of results from its
search algorithm.

Matching Algorithm
The search algorithm first locates mission executions in

the KB with the desired number and type of agents. KB
scenarios could potentially include large numbers of agents
over a long period of time, and TAF considers all assign-
ments of agents in the query to entities of the same type in
the KB scenario. 2

Next the algorithm extracts time-varying spatial features
derived from agent positions, such as distance between agents
and the difference in heading. The on-the-fly feature extrac-
tion creates a multi-dimensional trajectory through feature
space. Users can select and de-select features to improve
search results.

The extracted features are rotationally invariant but scale-
dependent, since range is a crucial aspect of air engagement -
e.g. various sensors, weapons, and aircraft are distinguished
largely by how far they can reach, etc.

Rate (or velocity) is a special challenge when deriving be-
haviors from sketches. Aircraft velocity is key in fighter
combat, but sketching in proportion to actual desired veloc-
ities is not feasible. Yet the sketch may contain some useful
information on relative rates (such as one fighter catching
up to another), and turn rates. The TAF matching algo-
rithm selectively discards rate information by resampling
paths (from both the sketch and the KB) at uniform incre-
ments of distance (e.g. 1 km) rather than time.

Next, TAF matches individual maneuvers to segments of
trajectories. TAF uses the Dynamic Time Warping algo-
rithm to perform segmentation and matching. We have
extended the implementation from [2] to perform segmen-
tation by matching against multiple patterns at every time
step, keeping track of the best match at each time step, and
reporting it as a match (and eliminating all tentative lower-
scoring matches) as soon as it is determined that a match
cannot be exceeded by any future match (the patterns have
finite length).

Generating Agent Behaviors TAF provides a list of matches
to the user, who can visually examine the matches and view
the model trace that generated the matching trajectory. The
model trace is the sequence of NGTS nodes whose names
and meanings have been determined by a task analysis and
decomposition, so they are human-readable.

Creating a new, cohesive behavior from a collection of
snippets is non-trivial. For example, many NGTS nodes
require a specific agent to be the current target; but this
may occur before the start of the matching portion of the
trace in most cases. Selecting a target is a complex process
that normally involves using various radar models.

2This creates a combinatorial problem which we currently
avoid by populating the KB only with small, self-contained
“mini-scenarios”; segmenting interacting entities in a large
scenario into small subsets of entities that actually interact
is another possibility.

Using a Bayesian model of the frequency of invocation for
behaviors in the hand-coded BTNs, and the common links
between them, we can match against a formalization of the
preconditions for the commands in the new BTN to compose
a behavior that is self-contained and self-consistent.

We view the model trace as being generated by a Markov
Chain [3] (with each node being a state). We create an
adjacency matrix from the transition matrix of the Markov
Chain by thresholding on the transition properties. Post
processing is done to add necessary nodes and metadata to
the BTN.

Finally, the generated BTN is provided to the user for
their use.

Figure 1: The TAF Sandbox application.

Figure 2: An example BTN. Nodes are primitive
behaviors provided by NGTS. Node descriptions:
Start node = beginning of the tree. Fly to Target
= instructs agent to fly to a particular target. Dis-
tance to target LTET = a conditional (or trigger in
BTN terms) that fires when the agent is Less Than
or Equal To some predefined distance to the target.
Changes Heading = Agent changes heading when
previous node fires.
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