
Robust Dynamic Optimization with Application to Kidney
Exchange

(Doctoral Consortium)
John P. Dickerson

Computer Science Department, Carnegie Mellon University
Pittsburgh, PA, USA

dickerson@cs.cmu.edu

ABSTRACT
Kidney exchange provides a life-saving alternative to long waiting
lists for patients in need of a new kidney. We derive a variety of
mathematical models for the kidney exchange optimization prob-
lem, where the general goal is to maximize some form of social
welfare vis-à-vis transplanting kidneys. We explore the implica-
tions of making the optimization problem dynamic (considering
the future evolution of the exchange pool when optimizing now),
failure-aware (where possible post-algorithmic match failures are
accounted for), and fairness-aware (losing overall efficiency at the
cost of a more balanced matching). Our goal is to provide an empir-
ically grounded framework that combines each of these dimensions
in a theoretically sound way. We support our models with real re-
sults from one of the largest fielded kidney exchanges in the world.
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1. INTRODUCTION
The preferred treatment for kidney failure is transplantation; how-

ever, the demand for donor kidneys is far greater than supply. For
example, 34,837 people were added to the US national waiting list
in 2012, while only 15,938 left it due to receiving a kidney [11].
Demand is increasing worldwide.

Complementing standard deceased and living donation is kidney
exchange, which allows patients with a willing but medically in-
compatible living donor to swap their donor with other patients.
Roth, Sönmez, and Ünver [10] were the first to address the eco-
nomics of large-scale kidney exchange, motivating the need to con-
sider properties like efficiency, incentive compatibility, and individ-
ual rationality when designing and fielding exchange mechanisms.
Since then, a number of multi-hospital kidney exchanges have been
fielded, prompting other economists, computer scientists, and med-
ical professionals to study the kidney exchange problem.

We look at kidney exchange primarily through the lens of com-
putational economics, but inform our research via collaboration
with the United Network for Organ Sharing (UNOS) National Kid-
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ney Paired Donation (KPD) Pilot Program, which includes 133 hos-
pitals, or roughly 58% of all transplant centers, in the United States.

2. TOWARD ROBUST DYNAMIC ORGAN
EXCHANGE

From a computational point of view, one can view an n-patient
kidney exchange as a directed compatibility graph G = (V,E).
Here, vertices represent patient-donor pairs, and a directed edge e
exists from vertex vi to vj if the patient belonging to vj is compat-
ible with the donor at vi. A donor is willing to give her kidney if
and only if her associated patient also receives a kidney; thus, we
are interested in forming cycles c in the graph G, where each vertex
in c obtains the kidney of the previous vertex.

In practice, cycles are capped in length by some small constant
L (for example, the UNOS exchange uses L = 3). This cap is due
to all transplants in a cycle necessarily being performed simulta-
neously so that no donor backs out after his patient has received
a kidney but before he has donated his kidney. A recent innova-
tion relaxes this constraint. Chains are initiated by a non-directed
(altruistic) donor with no paired patient donating his kidney to a
patient, whose paired donor donates her kidney to a patient, and so
on. Transplants in chains need not be executed simultaneously; if a
donor backs out after his paired patient receives a kidney, the chain
is unfortunately broken but no remaining pair is harmed.

A matching M is a collection of vertex-disjoint cycles and chains
in the graph G. Note that the elements of the matching must be
disjoint because no donor can give more than one of his kidneys.
Then, given the set of all legal matchings M, the general clear-
ing problem is to find some matching M∗ ∈ M that maximizes a
utility function u :M→ R. Formally:

M∗ = argmax
M∈M

u(M)

Abraham, Blum, and Sandholm [1] created the first scalable algo-
rithm for solving a basic (utilitarian, static, deterministic, no long
chains) version of this problem. Their algorithm leverages inte-
ger programming, specifically branch-and-price, a technique that
proves optimality by incrementally generating only a small part of
the model during tree search. Our work significantly extends both
the formulation they considered and the algorithmic techniques used
to find a matching that is provably or approximately optimal.

2.1 New dimensions in kidney exchange
Translating a real-world problem into an abstract mathematical

model inevitably results in some loss of correspondence between
the final computed solution and whatever is implemented in reality.
We explore a variety of generalizations of the standard kidney ex-
change model that reduce this loss in expressiveness; we quantify
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the theoretical behavior of each generalization and validate them
empirically on generated and real data from the UNOS exchange.

2.1.1 Considering the future
Fielded exchanges currently match myopically, maximizing the

number of patients who get kidneys in an offline fashion at each
time period (e.g., weekly in the UNOS exchange). This is sub-
optimal; the clearing problem is dynamic since patients and donors
appear and expire over time. Thus, the matching algorithm should
take distributional information about possible futures into account
in deciding what action to take now. This is typically done by
drawing sample trajectories of possible futures at each time period,
but may require a prohibitively large number of trajectories or pro-
hibitive memory and computation to decide what action to take.

To counter the computational complexity of full dynamic opti-
mization, we proposed to learn potentials of elements (e.g., ver-
tices) of the current problem [4]. After learning potential, at run
time we must only run an offline matching algorithm at each time
period, but subtracting out in the objective the potentials of the el-
ements used up in the matching. We theoretically compared the
power of using potentials on increasingly large elements, and em-
pirically showed significant gains over myopic matching (while
scaling to much larger graphs than can be handled by other dy-
namic optimization techniques).

2.1.2 Failure-aware kidney exchange
Successful transplantation of a kidney relies on tissue-type com-

patibility between the donor organ and patient, among other medi-
cal and logistical factors. This is determined through a tissue-type
crossmatch between a donor and patient’s blood; if the two types
differ substantially, the patient’s body will reject the donor organ.

For a variety of practical reasons, including crossmatch failures,
most planned kidney exchange transplants do not go to transplant in
reality. In [6], we analyzed the inclusion of probabilistic match fail-
ures in standard kidney exchange models. We address two presently
unsolved problems in kidney exchange: first, how the efficacy of
altruist-initiated donor chains changes as chain length increases
(which we also considered theoretically and empirically in a de-
terministic model in [5]), and second, how to match robustly in the
face of post-algorithmic match transplant failure.

We showed that failure-aware kidney exchange can significantly
increase the expected number of lives saved in theory, on random
graph models; on real data from UNOS kidney exchange match
runs; and on synthetic data generated via a model of dynamic kid-
ney exchange [6]. We also designed a branch-and-price-based opti-
mal clearing algorithm for the probabilistic exchange clearing prob-
lem and showed that this new solver scales well on large simulated
data, unlike prior clearing algorithms.

2.1.3 Balancing efficiency and equity
Some patients are highly-sensitized; there is a very low proba-

bility that their blood will pass a crossmatch test with a random
organ. For these patients, finding a kidney is quite difficult (and
median time on the waiting list jumps by a factor of three over less
sensitized patients [11]). Roughly 17% of the adult patients on the
waiting list for deceased donor kidneys are highly-sensitized [8].
Conversely, the percentage of highly-sensitized patients in fielded
kidney exchanges is quite high; roughly 60% of the UNOS nation-
wide kidney exchange is highly-sensitized.

Motivated by these highly-sensitized pools, we proposed two
natural criteria for balancing fairness and efficiency in kidney ex-
change [7]. We performed a preliminary theoretical analysis of the
price of fairness—the relative loss in efficiency due to considering
fairness—in dense kidney exchange graphs, and showed empiri-
cally that these results do not align with real data.

2.2 General robust dynamic optimization
Our completed work has largely addressed each of these out-

standing issues in fielded exchanges independently. Moving for-
ward, the kidney exchange community would benefit immensely
from combined approaches to handling not just dynamic match-
ing, match failures, and fairness in the optimization problem, but
also game-theoretic and legal considerations in the design of the
matching mechanism itself. We plan to draw on previous work
from the operations research and economics literature to move in
this direction: for example, Hooker and Williams present a general
methodology for balancing a particular form of fairness (that we
feel would not be the criterion of choice in kidney exchange) and
efficiency [9]; Bertsimas, Farias, and Trichakis formalized a pro-
posal for balancing fairness and efficiency in deceased organ allo-
cation [3]; and Ashlagi, Jaillet, and Manshadi theoretically address
dynamic exchange in a reduced model [2]. A general parameter-
ized model of kidney exchange will increase the efficacy of fielded
exchange and aid in the widespread adoption of new exchanges in
differing legal and political environments.

3. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation

under grants IIS-0905390, IIS-0964579, and CCF-1101668 and by
the Department of Defense (DoD) through the National Defense
Science & Engineering Graduate Fellowship (NDSEG) Program.
This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation grant number OCI-1053575 and the Blacklight sys-
tem at the Pittsburgh Supercomputing Center (PSC). The author
acknowledges Intel Corporation and IBM for gifts. The author also
thanks the UNOS KPD Pilot Program staff.

4. REFERENCES
[1] D. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for

barter exchange markets: Enabling nationwide kidney exchanges. In
ACM Conference on Electronic Commerce (EC), pages 295–304,
2007.

[2] I. Ashlagi, P. Jaillet, and V. H. Manshadi. Kidney exchange in
dynamic sparse heterogenous pools. In ACM Conference on
Electronic Commerce (EC), pages 25–26, 2013.

[3] D. Bertsimas, V. F. Farias, and N. Trichakis. Fairness, efficiency, and
flexibility in organ allocation for kidney transplantation. Operations
Research, 61(1):73–87, 2013.

[4] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Dynamic
matching via weighted myopia with application to kidney exchange.
In Proceedings of the National Conference on Artificial Intelligence
(AAAI), pages 1340–1346, 2012.

[5] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Optimizing
kidney exchange with transplant chains: Theory and reality. In
International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 711–718, 2012.

[6] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Failure-aware
kidney exchange. In ACM Conference on Electronic Commerce (EC),
pages 323–340, 2013.

[7] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Price of fairness
in kidney exchange. In International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), 2014.

[8] HHS/HRSA/HSB/DOT. OPTN/SRTR annual data report, 2011.
[9] J. N. Hooker and H. P. Williams. Combining equity and utilitarianism

in a mathematical programming model. Management Science,
58(9):1682–1693, 2012.

[10] A. Roth, T. Sönmez, and U. Ünver. Kidney exchange. Quarterly
Journal of Economics, 119(2):457–488, 2004.

[11] United Network for Organ Sharing (UNOS). http://www.unos.org/.

1702




