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1. INTRODUCTION
Scheduling an event for a group of people is a notoriously

frustrating task; it tends to be tedious, time consuming, and
often leads to suboptimal schedules. One reason the problem
has resisted a solution is that it has many dimensions, some
of them easy to put one’s finger on, but others more subtle
such as game-theoretic manipulability of the procedure.

The first part of this work seeks algorithmic solutions to
group scheduling problem. Assuming prompt and truth-
telling agents, we can aim to design an efficient algorithm
that finds the optimal scheduling process with respect to a
given cost function. In Section 3 we formally define this as
an optimization problem, and investigate the difficulty of
the problem. We propose an efficient algorithm for finding
the optimal solution, and then use the proposed algorithm
in simulations to show that the result substantially outper-
forms the baseline approach in many realistic settings.

The second part of this work puts more weight on the
strategic behavior of agents. Imagine that agents have pref-
erences over both the time and the number of attendees at
the event. Given a set of invitees, the set is said to be sta-
ble if all invitees prefer attending to not attending, and if
no uninvited person wishes she had been invited. Stability
is obviously desirable, but in general a stable schedule may
not exist; therefore it is interesting to know how hard it is to
determine whether it exists (and to find the one that max-
imizes attendance). These questions take an extra meaning
if agents can strategically misreport their preferences, and
we answer these questions in Section 4.

2. RELATED WORK
Early work in AI had a heuristic, systems-oriented flavor

to it. Jennings et al. [4] proposed the design of an agent-
based meeting scheduling system that negotiates with oth-
ers on behalf of human users. More recently, Crawford and
Veloso [1] approached to the group scheduling problem by
training agents to learn about the negotiation strategies of
others. The work by Darmann et al. [2] is closely related
to ours. There agents are assumed to have preferences over
activities as well as number-of-participants. We inherit from
the work of Darmann et al. both the preference structure
and the stability criterion. In their work, though, agents
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can be assigned to one of any number of activities, but
in our problem a single time slot must be selected for the
event. More dramatically, Darmann et al. only consider non-
strategic agents, while we consider both the non-strategic
and the strategic cases. Ephrati et al. [3] tackled incentive
issues, by extending the VCG mechanisms into scheduling
systems, assuming that availability of the agents is known.

3. OPTIMAL GROUP SCHEDULING

3.1 Problem Setting
We consider a class of Single-proposer Mechanisms (SPMs)

in which the sole convener tries to find an agreeable time slot
for a group of agents. Consider a set N of n invitees and a
set S of s time slots. For each agent ai and each time slot t,
there is a known prior probability, pi,t, such that the agent
is available at time t with probability pi,t and unavailable
with probability (1−pi,t). While pi,t’s are known to the con-
vener as a prior, the realization of availability of each agent
is private information. The convener aims to find a feasible
time slot by asking invitees to reveal their availability; a fea-
sible time slot requires at least df ·ne agents be available (f
is called the feasibility threshold). The convener iteratively
sends out a group of time slots until a feasible one is found.
In our setting Time spent by the scheduling process is mea-
sured by the number of iterations and Inconvenience caused
by the total number of time slots that have been sent out
by the convener. Any valid (ordered) partition of S is called
a B-Doodle mechanism, denoted by B, which describes the
way the convener is polling availability of agents.

Definition 1 (Group Scheduling Problem). An instance of
the Group Scheduling Problem (GSP) is a tuple (N,S, f, P, c)
where N = {a1, a2, . . . , an} is a set of n agents , S =
{1, 2, . . . , s} is a set of s time slots, f is the feasibility thresh-
old (0 ≤ f ≤ 1), P = {pi,t} is probability distributions of
availability (with 0 ≤ pi,t ≤ 1 for all i, t), and c is a cost func-
tion (where c(j, b) > 0 describes the aggregate cost of Time
and Inconvenience that is incurred by sending out b time slots
during the j-th iteration). We assume that cost is additive
so that the overall cost of executing the first j iterations
of Bm = 〈S1, S2, . . . , Sm〉 is simply the sum,

∑j
k=1 c(k, bk)

where bk = |Sk|. The objective in GSP is to find an optimal
partition, B∗, of S such that B∗ minimizes the expected cost
(expectation with respect to P ), given (N,S, f, c, P ).

3.2 Preliminary Results
In this idealized setting where agents are prompt and

truth-telling, we are able to design an efficient algorithm
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that runs in polynomial time and finds the optimal B-Doodle
mechanism that minimizes the expected cost, given an in-
stance of (N,S, f, P, c) of GSP. Using our algorithm in sim-
ulations, we also observed that Doodle is substantially inef-
ficient, including (but not limited to) when one or more of
the following conditions hold:

• There is a relatively small number of agents (n ≤ 10).

• There is a large number of time slots (s ≥ 15).

• Agents are relatively free (p > .5).

• Feasibility threshold is relaxed (f < .8).

• c places more weight on Inconvenience than Time.

First four conditions affect the probability of feasibility of a
given time slot in the same way; if the probability is high,
then Doodle ought to be more inefficient. While the last con-
dition is independent of this probability, c determines what
is being optimized, and Doodle becomes more inefficient if
c favors reducing Inconvenience over reducing Time.

4. COPING WITH STRATEGIC AGENTS

4.1 Problem Setting
Definition 2 (Setting). An instance of the Stable Group
Scheduling Problem (SGSP) is a tuple (N,M,P ) where N =
{a1, a2, . . . , an} is a set of n agents, M = {t1, t2, . . . , tm}
is a set of time slots, and P is a collection of preferences
of agents (P = (P1, P2, . . . , Pn)). For each agent ai, Pi is a
total preorder (�i) on the set of alternatives, X = X0∪{x∅},
where X0 = (M ×{1, 2, . . . , n}) and x∅ is the outside option
of not attending; for any alternative x ∈ X, (t, k) �i x is
interpreted as agent ai weakly preferring attending the event
at time t if k attendees are present (including herself) to the
alternative x (and similarly for x �i (t, k)).

We set Ai = {(t, k) ∈ X0|(t, k) �i x∅} and say that agent
ai approves of all alternatives in Ai. When each agent is
indifferent among all alternatives in Ai, we call the problem
a simple Stable Group Scheduling Problem (s-SGSP).

Definition 3 (Schedule). A schedule for an instance (N,M,P )
is a pair (t, St) such that t ∈ M and St ⊆ N , and is inter-
preted as the organizer chooses time t and invites a subset
of agents, St. Note that St = ∅ is allowed in our definition.
A schedule (t, St) is said to be individually rational if for
every agent ai ∈ St it holds that (t, |St|) ∈ Ai. A schedule
(t, St) is said to be envy-free if for every agent ai 6∈ St it
holds that (t, |St ∪ {ai}|) 6∈ Ai. A schedule is stable if it is
both individually rational and envy-free.

Definition 4 (Single-peaked preferences). Given an instance
(N,M,P ) of SGSP, the preferences of agent ai are single-
peaked (SPK) if for every fixed time slot t ∈ M there exists
an ideal number of attendees, oti ∈ {1, . . . , n}, such that for
any k1 ≤ k2 ≤ oti it holds that (t, k2) �i (t, k1) and for any
oti ≤ k2 ≤ k1 it holds that (t, k2) �i (t, k1).

There are two important special cases of SPK-preferences:
increasing preferences (INC-preferences) and decreasing pref-
erences (DEC-preferences). Agent ai is said to have an INC-
preference with respect to time slot t if oti = n (this agent
prefers maximizing attendees). Analogously agent ai is said
to have a DEC-preference with respect to t if oti = 1. We
assume that all agents have SPK-preferences with respect to
all time slots; such an instance is called an SPK-instance of
SGSP (and analogously for INC and DEC-instances).

4.2 Preliminary Results

Theorem 1. Given an SPK-instance of SGSP and non-
strategic agents, there exists an algorithm that terminates
in polynomial time, and decides whether a stable schedule
exists (and if it exists, the algorithm finds a maximum one).

Theorem 2. It is impossible to design a strategy-proof
mechanism that finds any stable schedule (provided that
it exists), even if the problem space is restricted to DEC-
instances of s-SGSP with |N | = 2 and |M | = 1. It is also
impossible to design a strategy-proof mechanism that finds
any stable schedule (provided that it exists), even if the
problem space is restricted to INC-instances of SGSP with
|N | = 2 and |M | = 2.

Theorem 3. There exists a (deterministic) strategy-proof
mechanism that finds a maximum stable schedule in poly-
nomial time, given an INC-instance of s-SGSP.

5. CURRENT AND FUTURE WORK
In Section 3, we investigated an optimization problem in

group scheduling. While useful in and of itself, this work
leaves many open questions. It will be interesting to extend
our B-Doodle mechanisms to Multi-proposer Mechanisms
(MPMs) in which agents may negotiate with others. We
implicitly assumed that agents prefer all time slots equally,
but it will be important to study the trade-off between op-
timizing the cost and finding a ‘good’ schedule.

In Section 4, we moved our focus to stability constraints
and strategic behavior of agents. One direction for future
work is to allow each agent to specify her preferences over
time slots (in addition to the number of attendees). Another
direction is to take the identities of attendees into account.
In realistic situations an agent may have constraints such
as “I will only attend if some agent y attends as well”. We
believe such extensions will make our model more realistic
and applicable in multi-agent scheduling systems.
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