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ABSTRACT
Multi-agent systems represent a powerful tool to model sev-
eral interesting real-world problems. Unfortunately, the lim-
ited scalability of many state-of-the-art algorithms hinders
their applicability in practical situations: in fact, complex
dynamics and interactions among a large number of agents
often make the search for an optimal solution an unfeasi-
ble task. Against this background, the study and design of
new highly parallel computational models could greatly im-
prove solution techniques in the above mentioned fields. In
particular, I will introduce two parallel approaches to the
coalition formation problem in the context of multi-agent
systems, detailing how their performances can benefit from
the use of modern parallel architectures.

1. INTRODUCTION
Multi-agent systems represent a powerful approach to the
description and solution of many practical problems, with
several applications such as coordinated defence systems,
smart grid electricity networks, transportation, logistics and
sensor networks. Typical multi-agent systems are charac-
terised by complex dynamics and interactions among a large
number of agents, which usually translate into hard com-
binatorial problems, posing significant challenges from the
computational point of view. Hence, the study of innovative
techniques which can deal with such computational burden
is fundamental and would give a strong contribution to the
research in this scenarios. In particular, my research focuses
on highly parallel computational models (e.g., GPGPUs or
many-core CPUs), in order to improve current solution tech-
niques by means of new algorithmic approaches that take
advantage of such novel hardware architectures.
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It is important to note that several interesting problems
in this field (e.g., coalition formation, winner determination
problem in combinatorial auctions, etc.) exhibit a common
structure and many similar features, hence the above men-
tioned innovations could be applied to many different ap-
proaches in multi-agent systems. In particular, coalition for-
mation is one of the fundamental methods for establishing
collaborations among agents, each with individual objectives
and properties, which, unfortunately, requires an exponen-
tial amount of time to be solved to optimality. Coalition
formation is typically used to model the cooperation among
fully cooperative agents (e.g., rescue teams or sensor net-
works) or among selfish agents that are only interested in
their own utility, to help customers in the context of group
buying or energy users in the collective energy purchasing
scenario. In particular, in the latter scenario each agent is
characterised by an energy consumption profile that repre-
sents its energy consumption throughout a day [3]. More
precisely, each coalition of agents is associated to the total
cost that the group would incur if they buy energy as a col-
lective on two different markets: the spot market, a short
term market intended for small amounts of energy, and the
forward market, a long term one in which bigger portions
of energy can be bought at cheaper prices. The above men-
tioned scenario, together with several other real-world ap-
plications, is characterised by sparse synergies between the
agents which may constrain the formation of some coalitions
[2, 5]. These constraints may be due to communication in-
frastructures (e.g., non-overlapping communication loci or
energy limitations for sending messages across a network),
social or trust relationships (e.g., energy consumers who pre-
fer to group with their friends and relatives in forming en-
ergy cooperatives), or physical constraints (e.g., emergency
responders that have enough fuel to join only specific teams).

In what follows, I will describe the work of a recent paper
[2], in which a new algorithm to solve coalition structure
generation (CSG) on synergy graphs (namely, the CFSS al-
gorithm) has been proposed, detailing how this new solution
technique could benefit from the computational power pro-
vided by the above mentioned multi-core architectures.

2. PARALLEL CFSS
The CFSS algorithm [2] is based on a novel representation
of the CSG problem on synergy graphs, which, by means of
a series of edge contractions on the constraint graph, allows
us to build a search tree where each node corresponds to a
feasible coalition structure, while avoiding redundancy.
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Figure 1: Example of an edge contraction in a triangle
graph (the dashed edge is contracted to give the graph on
the right)

Figure 1 shows the contraction of the edge ({A} , {C}),
which results in a new vertex {A,C} connected to vertex
{B}. Intuitively, a contraction of an edge represents the
merging of the coalitions associated to its incident vertices.
This new model improves the state-of-the-art with several
contributions: in fact, its scalability benefits from its poly-
nomial memory requirements, which allow to provide ap-
proximate solutions with quality guarantees for systems with
thousands of agents. Furthermore, the search space can be
partitioned avoiding redundancy, hence enabling a parallel
solving algorithm. In [2] we proposed a simple multi-core im-
plementation of the CFSS algorithm, obtained by having dif-
ferent threads to search different branches of the search tree.
The only required synchronisation point is the computation
of the current best solution that must be read and updated
by every thread. In particular, the distribution of the com-
putational burden is done by assigning each subtree rooted
in every node of the first generation to an arbitrary number
of threads. This approach allows to obtain a speedup higher
than 7× on a 12 cores machine, but its effectiveness relies
on the determination of some parameters governing the par-
tition of the search tree among the threads, which, in our
work, has been done by a manual tuning process.1 More
advanced techniques found in literature, such as estimating
the number of nodes in the search tree as suggested in [4],
could provide a more robust implementation able to adapt
and perform well on all possible instances. Moreover, the
scalability of CFSS could benefit by the adoption of modern
highly parallel computational architectures (i.e., GPGPUs
with dynamic parallelism), allowing us to optimally solve
instances one order of magnitude bigger than the current
limit (60 agents).

In general, GPGPUs represent a great opportunity to im-
prove state-of-the-art algorithms in multi-agent system: in
fact, many interesting scenarios are characterised by compu-
tationally hard problems, whose search space is exponential
in the number of agents. The next section will describe an
example of application in which this concept can be applied,
taking advantage of structure of the problem to exploit the
massive amount of computational power provided by CUDA
architectures.

3. FUTURE WORK: GPGPU
One of the most promising open research lines in the above
mentioned field includes the CUDA implementation of the
joint sum operator, used by many GDL-based algorithms [1],
which would allow a speedup in various solution techniques.

1After an empirical analysis, we verified that the distribu-
tion of the nodes over the search tree does not vary signifi-
cantly among different instances.

Unfortunately, the copious amount of memory and time
needed for the joint sum operation limits the instances that
can be solved to systems of tens of agents. Thus, the re-
duced scalability of such approach hinders its applicability to
real-world situations, especially due to the significant mem-
ory requirements of algorithms like dynamic programming
of belief propagation.

Some previous works in the scientific literature focus on
the parallel implementation of such operation: in particu-
lar, Zheng and Mengshoel [6] propose a multi-threaded al-
gorithm to compute messages required by belief propaga-
tion in Bayesian networks. Authors devise a parallelisation
model in which every row of the separator table is assigned
to one thread, whose task is to retrieve the corresponding
input rows and compute their outputs.

More in general, one of the fundamental challenges in the
design of an efficient massively parallel solution technique is
to structure the entire algorithmic approach in order to take
advantage of the specific features of GPGPUs in terms of
hardware architecture: achieving optimal memory accesses
and obtaining an adequate computational throughput are
not trivial tasks, but if done correctly, the performance and
scalability improvements can be overwhelming.

In this sense, GPGPUs can be seen as an “enabling tech-
nology” for multi-agent systems: the above mentioned ad-
vantages, together with new computational models such as
dynamic parallelism2 (as an implementation of the decen-
tralised nature of agents), could represent a significant con-
tribution to several real-world applications of multi-agent
systems.
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