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ABSTRACT
Cooperative multiagent systems are an important area of research,
with many applications including air traffic control, satellite com-
munications, and extraplanetary exploration. These applications
also lend themselves to multiple simultaneous objectives, but multi-
objective multiagent systems have garnered little attention. We
make contributions to three distinct aspects of multi-objective mul-
tiagent systems: integrating credit assignment into multi-objective
systems; providing a computationally efficient technique for deal-
ing with non-convex Pareto fronts; and providing a framework for
outside knowledge to be integrated into the agent’s reward structure
in multi-objective problems. These three contributions together
break down some of the largest barriers that have prevented multi-
agent multi-objective research from gaining traction.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems
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1. INTRODUCTION
Cooperative multiagent systems (MASs) focuses on producing a

set of autonomous agents to achieve a system-level goal [6]. Mul-
tiagent frameworks have been used to study complex, real-world
systems like air traffic [1, 6], teams of satellites, and extra-planetary
rover exploration. In most cases, the goal is to optimize a single,
well-defined objective function.

But, in many of these cases, the problems lend themselves more
naturally to multiple objectives: for example, air travel should be as
safe and as expedient as possible. Satellites may need to make ob-
servations for multiple separate institutions. Extra-planetary rovers
should acquire multiple different types of scientific data. However,
most research in multiagent systems does not address them as a
multi-objective problem (MOP).

The contributions of this thesis are threefold: first, the integration
of credit assignment from multiagent systems into multi-objective
problems (Section 2); second, the development of a technique for
dealing with Pareto fronts of unknown convexity (Section 3); and
third, the a method for inclusion of outside knowledge to boost
learning speed in multi-objective problems (Section 4).
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2. ON CREDIT ASSIGNMENT IN MOPS
Developing successful agent policies in MASs can be challeng-

ing. One successful approach is to use adaptive agents with tools
like reinforcement learning or evolutionary algorithms. Each agent
seeks to maximize its own reward; with a properly designed reward
signal, the whole system will attain desirable behaviors. This is
the science of credit assignment: determining the contribution each
agent had to the system as a whole. Clearly quantifying this contri-
bution on a per-agent level is essential to multiagent learning. This
is an issue that has not been studied within the context of MOPs.

Contribution.
We draw from the framework of difference rewards [1], and de-

velop them in a multi-objective setting. We discuss some of the
challenges that arise when using various a priori and a posteori
multi-objective methods in tandem with difference rewards, and
identify properties of algorithms that allow symbiotic gains.

Significance.
We show that credit assignment is incredibly important in MO-

MASs; at least as important as the choice of multi-objective scalar-
ization. Using proper credit assignment increases learning speed by
up to 10x over a traditional global reward, and greatly increases ro-
bustness to unmodeled disturbances (up to 98% in some domains).

3. ON UNKNOWN PARETO FRONTS
In MOPs, there is no single optimal solution. Instead, there usu-

ally exists a set of optimal solutions which trade a loss on one ob-
jective for some amount of gains elsewhere. These solutions are
called the Pareto front. The shape of the Pareto front in the objec-
tive space dictates which types of methods can be used to solve for
solutions along the Pareto front. Specifically, some methods have a
very difficult time finding regions of the Pareto front that are con-
cave. This is unfortunate, as the shape of the Pareto front is not
known until after optimization. Choosing an optimizer without the
ability to find these concave solutions may mask the true nature of
the Pareto front, and the system designer may never ever know that
there exists a larger set of potential tradeoff solutions that are also
Pareto optimal.

Techniques that are capable of solving for concave portions of
Pareto fronts tend to be computationally expensive, however. Es-
pecially in tandem with multiagent techniques, this can present an
insurmountable computational boundary.

Contribution.
One of the most computationally efficient methods is the lin-

ear combination of objectives, but it has been proven to be unable
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to find concave areas of the Pareto front [2]. We present a novel
objective-space transformation that shapes the Pareto front such
that it is non-concave in the transformed space. This transforma-
tion is known as the Pareto Concavity Elimination Transformation
(PaCcET). Using a linear combination in this transformed space
then leads to the discovery of solutions all along the Pareto front,
even in the case of discontinuous or concave Pareto fronts.

The basic functionality of PaCcET is to keep the current approx-
imation of the Pareto front P ∗

I , based on all previous iterations.
Using this approximation, we can create a transformation such that
P ∗
I lies on an equivaluable line to a linear combination. This means

that any non-dominated point will be more desirable to an opti-
mizer than a point on P ∗

I , and a dominated point will be less val-
ued. This succinctly addresses the issue of concavity for the lin-
ear combination, because the Pareto front in the transformed space
is thus known to be globally non-concave. As the approximation
of the Pareto front is pushed forward further and further, to better
approximate the front, each local concavity of the Pareto front is
transformed such that it is no longer. With a sufficiently powerful
optimizer, this eventually results in the entire actual Pareto front
existing on the equivaluable line.

Figure 1 shows this process visually. The grid of points in the
first figure is the same grid of points in the second figure, but in the
second they have been transformed such that the red points of P ∗

I

all lie on the portion of the space that evaluates to a linear combi-
nation of 1. The space is distorted, but not broken, and any single-
objective optimizer can be used to optimize in this space.

Significance.
MOP and MAS research have each independently developed a

set of tools for answering the challenges that either type of problem
will encounter independently. Likewise, MOP and MAS research
has developed an understanding for when an inferior method will
provide results that are good enough for the application at hand.
Combining the two upsets both of these: using a complex tool from
each branch of research in tandem can create an insurmountable
computation barrier, while using an inferior method that would nor-
mally produce desirable results can be upset by the complications
introduced by the other branch.

PaCcET allows a low-computational method for finding arbitrary
Pareto fronts without sacrificing the quality of solutions that are
generated, when compared to more sophisticated multi-objective
algorithms. This allows various complex techniques from the MAS
body of research to be used without the computational barrier.

4. ON THE INCLUSION OF
PRIOR KNOWLEDGE

Tabula rasa learning is arguably the worst possible approach for
applying adaptive agents into the real world [5]. Though they offer
high flexibility, there is often a lot of information that the system
designer can provide to make the learning process easier. A frame-
work for bestowing this knowledge to the agent is Potential Based
Reward Shaping (PBRS) [3]. Often, a system designer will know
something about how the agent can achieve its goals, and PBRS al-
lows the agent to receive this knowledge. PBRS is well-developed
for a single agent and single objective. Some work has been done
in extending this into MASs [3], but none has addressed the com-
plexities that arise with multi-objective PBRS.

Contribution.
We developed Difference Rewards including PBRS (DRiP), com-

bining the agent-specificity of the difference reward with the ability
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Figure 1: A grid of points before (top) and after (bottom) being
transformed by PaCcET to guarantee the non-concavity of the
Pareto front (red dots).

of PBRS to include designer knowledge into the reward signal [4].
Using the multi-objective extension to this, MO-DRiP, we can do
the same in a multi-objective setting.

Significance.
We show that this increases learning speed over using Differ-

ence Rewards or PBRS alone, and can potentially learn otherwise
insurmountable tasks by leveraging the knowledge that a system
designer has about how the system should work. Using DRiP does
not change the Nash equilibria in the system beyond any distur-
bances created by Difference rewards alone.
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